Loader

Pathways

PathWhiz ID Pathway Meta Data

PW176721

Pw176721 View Pathway
drug action

Astemizole H1-Antihistamine Blood Vessel Constriction Action Pathway

Homo sapiens
Astemizole is a second generation antihistamine used to treat allergy symptoms. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Astemizole inhibits the H1 histamine receptor on blood vessel endothelial cells. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin. Calcium bound calmodulin is required for the activation of the calmodulin-binding domain of nitric oxide synthase. The inhibition of nitric oxide synthesis prevents the activation of myosin light chain phosphatase. This causes an accumulation of myosin light chain-phosphate which causes the muscle to contract and the blood vessel to constrict, decreasing the swelling and fluid leakage from the blood vessels caused by allergens.

PW060843

Pw060843 View Pathway
drug action

Astemizole H1-Antihistamine Action

Homo sapiens
Astemizole is a second-generation piperidine H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.

PW176628

Pw176628 View Pathway
drug action

Astemizole H1 Antihistamine Smooth Muscle Relaxation Action Pathway

Homo sapiens
Astemizole is a second generation antihistamine used to treat allergy symptoms. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Astemizole also inhibits the H1 histamine receptor on bronchiole smooth muscle myocytes. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin.Calcium bound calmodulin is required for the activation of myosin light chain kinase. This prevents the phosphorylation of myosin light chain 3, causing an accumulation of myosin light chain 3. This causes muscle relaxation, opening up the bronchioles in the lungs, making breathing easier.

PW144751

Pw144751 View Pathway
drug action

Astemizole Drug Metabolism Action Pathway

Homo sapiens

PW147009

Pw147009 View Pathway
metabolic

Aspirin Drug Metabolism Pathway

Homo sapiens

PW000458

Pw000458 View Pathway
disease

Aspartylglucosaminuria

Homo sapiens
Aspartylglucosaminuria is an autosomal recessive disorder of lysosomal storage caused by a mutation in the AGA gene which codes for N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase. A deficiency in this enzyme results in accumulation of aspartylglycosamine and oligosaccharides in urine. Symptoms, which present in childhood, include skeletal changes, speech abnormalities, macroglossia, and mental retardation. Treatment includes bone marrow transplants.

PW144271

Pw144271 View Pathway
drug action

Aspartic acid Drug Metabolism Action Pathway

Homo sapiens

PW126787

Pw126787 View Pathway
metabolic

Aspartate Metabolism 1648490310

Pseudomonas aeruginosa
Aspartate is synthesized from and broken down to oxaloacetate, a TCA cycle intermediate, via a reversible transamination reaction with glutamate. This reaction is catalyzed by the aminotransferase AspC or TyrB. Aspartate is a component of proteins and is involved in many biosyntheses pathways like NAD biosynthesis and beta-alanine metabolism. Aspartate can also be synthesized from fumaric acid through an aspartate ammonia lyase. Aspartate also participates in the synthesis of L-asparagine through two different methods, either through aspartate ammonia ligase or asparagine synthetase B. Aspartate is also a precursor of fumaric acid. Again it has two possible ways of synthesizing it. First set of reactions follows an adenylo succinate synthetase that yields adenylsuccinic acid and then adenylosuccinate lyase in turns leads to fumaric acid. The second way is through argininosuccinate synthase that yields argininosuccinic acid and then argininosuccinate lyase in turns leads to fumaric acid.

PW126786

Pw126786 View Pathway
metabolic

Aspartate Metabolism 1648490207

Pseudomonas aeruginosa
Aspartate is synthesized from and broken down to oxaloacetate, a TCA cycle intermediate, via a reversible transamination reaction with glutamate. This reaction is catalyzed by the aminotransferase AspC or TyrB. Aspartate is a component of proteins and is involved in many biosyntheses pathways like NAD biosynthesis and beta-alanine metabolism. Aspartate can also be synthesized from fumaric acid through an aspartate ammonia lyase. Aspartate also participates in the synthesis of L-asparagine through two different methods, either through aspartate ammonia ligase or asparagine synthetase B. Aspartate is also a precursor of fumaric acid. Again it has two possible ways of synthesizing it. First set of reactions follows an adenylo succinate synthetase that yields adenylsuccinic acid and then adenylosuccinate lyase in turns leads to fumaric acid. The second way is through argininosuccinate synthase that yields argininosuccinic acid and then argininosuccinate lyase in turns leads to fumaric acid.

PW064431

Pw064431 View Pathway
metabolic

Aspartate Metabolism 1512214152

Homo sapiens