PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW122611View Pathway |
Amino Sugar and Nucleotide Sugar Metabolism IIIPseudomonas aeruginosa
The synthesis of amino sugars and nucleotide sugars starts with the phosphorylation of N-Acetylmuramic acid (MurNac) through its transport from the periplasmic space to the cytoplasm. Once in the cytoplasm, MurNac and water undergo a reversible reaction catalyzed by N-acetylmuramic acid 6-phosphate etherase, producing a D-lactic acid and N-Acetyl-D-Glucosamine 6-phosphate. This latter compound can also be introduced into the cytoplasm through a phosphorylating PTS permase in the inner membrane that allows for the transport of N-Acetyl-D-glucosamine from the periplasmic space. N-Acetyl-D-Glucosamine 6-phosphate can also be obtained from chitin dependent reactions. Chitin is hydrated through a bifunctional chitinase to produce chitobiose. This in turn gets hydrated by a beta-hexosaminidase to produce N-acetyl-D-glucosamine. The latter undergoes an atp dependent phosphorylation leading to the production of N-Acetyl-D-Glucosamine 6-phosphate. N-Acetyl-D-Glucosamine 6-phosphate is then be deacetylated in order to produce Glucosamine 6-phosphate through a N-acetylglucosamine-6-phosphate deacetylase. This compound can either be isomerized or deaminated into Beta-D-fructofuranose 6-phosphate through a glucosamine-fructose-6-phosphate aminotransferase and a glucosamine-6-phosphate deaminase respectively.
Glucosamine 6-phosphate undergoes a reversible reaction to glucosamine 1 phosphate through a phosphoglucosamine mutase. This compound is then acetylated through a bifunctional protein glmU to produce a N-Acetyl glucosamine 1-phosphate.
N-Acetyl glucosamine 1-phosphate enters the nucleotide sugar synthesis by reacting with UTP and hydrogen ion through a bifunctional protein glmU releasing pyrophosphate and a Uridine diphosphate-N-acetylglucosamine.This compound can either be isomerized into a UDP-N-acetyl-D-mannosamine or undergo a reaction with phosphoenolpyruvic acid through UDP-N-acetylglucosamine 1-carboxyvinyltransferase releasing a phosphate and a UDP-N-Acetyl-alpha-D-glucosamine-enolpyruvate.
UDP-N-acetyl-D-mannosamine undergoes a NAD dependent dehydrogenation through a UDP-N-acetyl-D-mannosamine dehydrogenase, releasing NADH, a hydrogen ion and a UDP-N-Acetyl-alpha-D-mannosaminuronate, This compound is then used in the production of enterobacterial common antigens.
UDP-N-Acetyl-alpha-D-glucosamine-enolpyruvate is reduced through a NADPH dependent UDP-N-acetylenolpyruvoylglucosamine reductase, releasing a NADP and a UDP-N-acetyl-alpha-D-muramate. This compound is involved in the D-glutamine and D-glutamate metabolism.
|
Creator: Ana Marcu Created On: August 12, 2019 at 18:24 Last Updated: August 12, 2019 at 18:24 |
PW000895View Pathway |
Amino Sugar and Nucleotide Sugar Metabolism IIIEscherichia coli
The synthesis of amino sugars and nucleotide sugars starts with the phosphorylation of N-Acetylmuramic acid (MurNac) through its transport from the periplasmic space to the cytoplasm. Once in the cytoplasm, MurNac and water undergo a reversible reaction catalyzed by N-acetylmuramic acid 6-phosphate etherase, producing a D-lactic acid and N-Acetyl-D-Glucosamine 6-phosphate. This latter compound can also be introduced into the cytoplasm through a phosphorylating PTS permase in the inner membrane that allows for the transport of N-Acetyl-D-glucosamine from the periplasmic space. N-Acetyl-D-Glucosamine 6-phosphate can also be obtained from chitin dependent reactions. Chitin is hydrated through a bifunctional chitinase to produce chitobiose. This in turn gets hydrated by a beta-hexosaminidase to produce N-acetyl-D-glucosamine. The latter undergoes an atp dependent phosphorylation leading to the production of N-Acetyl-D-Glucosamine 6-phosphate. N-Acetyl-D-Glucosamine 6-phosphate is then be deacetylated in order to produce Glucosamine 6-phosphate through a N-acetylglucosamine-6-phosphate deacetylase. This compound can either be isomerized or deaminated into Beta-D-fructofuranose 6-phosphate through a glucosamine-fructose-6-phosphate aminotransferase and a glucosamine-6-phosphate deaminase respectively.
Glucosamine 6-phosphate undergoes a reversible reaction to glucosamine 1 phosphate through a phosphoglucosamine mutase. This compound is then acetylated through a bifunctional protein glmU to produce a N-Acetyl glucosamine 1-phosphate.
N-Acetyl glucosamine 1-phosphate enters the nucleotide sugar synthesis by reacting with UTP and hydrogen ion through a bifunctional protein glmU releasing pyrophosphate and a Uridine diphosphate-N-acetylglucosamine.This compound can either be isomerized into a UDP-N-acetyl-D-mannosamine or undergo a reaction with phosphoenolpyruvic acid through UDP-N-acetylglucosamine 1-carboxyvinyltransferase releasing a phosphate and a UDP-N-Acetyl-alpha-D-glucosamine-enolpyruvate.
UDP-N-acetyl-D-mannosamine undergoes a NAD dependent dehydrogenation through a UDP-N-acetyl-D-mannosamine dehydrogenase, releasing NADH, a hydrogen ion and a UDP-N-Acetyl-alpha-D-mannosaminuronate, This compound is then used in the production of enterobacterial common antigens.
UDP-N-Acetyl-alpha-D-glucosamine-enolpyruvate is reduced through a NADPH dependent UDP-N-acetylenolpyruvoylglucosamine reductase, releasing a NADP and a UDP-N-acetyl-alpha-D-muramate. This compound is involved in the D-glutamine and D-glutamate metabolism.
|
Creator: miguel ramirez Created On: May 12, 2015 at 11:53 Last Updated: May 12, 2015 at 11:53 |
PW000887View Pathway |
Amino Sugar and Nucleotide Sugar Metabolism IIEscherichia coli
The synthesis of amino sugars and nucleotide sugars starts with the phosphorylation of N-Acetylmuramic acid (MurNac) through its transport from the periplasmic space to the cytoplasm. Once in the cytoplasm, MurNac and water undergo a reversible reaction through a N-acetylmuramic acid 6-phosphate etherase, producing a D-lactic acid and N-Acetyl-D-Glucosamine 6-phosphate. This latter compound can also be introduced into the cytoplasm through a phosphorylating PTS permase in the inner membrane that allows for the transport of N-Acetyl-D-glucosamine from the periplasmic space. N-Acetyl-D-Glucosamine 6-phosphate can also be obtained from chitin dependent reactions. Chitin is hydrated through a bifunctional chitinase to produce chitobiose. This in turn gets hydrated by a beta-hexosaminidase to produce N-acetyl-D-glucosamine. The latter undergoes an atp dependent phosphorylation leading to the production of N-Acetyl-D-Glucosamine 6-phosphate.
N-Acetyl-D-Glucosamine 6-phosphate is then be deacetylated in order to produce Glucosamine 6-phosphate through a N-acetylglucosamine-6-phosphate deacetylase. This compound can either be isomerized or deaminated into Beta-D-fructofuranose 6-phosphate through a glucosamine-fructose-6-phosphate aminotransferase and a glucosamine-6-phosphate deaminase respectively.
Glucosamine 6-phosphate undergoes a reversible reaction to glucosamine 1 phosphate through a phosphoglucosamine mutase. This compound is then acetylated through a bifunctional protein glmU to produce a N-Acetyl glucosamine 1-phosphate.
N-Acetyl glucosamine 1-phosphate enters the nucleotide sugar synthesis by reacting with UTP and hydrogen ion through a bifunctional protein glmU releasing pyrophosphate and a Uridine diphosphate-N-acetylglucosamine.This compound can either be isomerized into a UDP-N-acetyl-D-mannosamine or undergo a reaction with phosphoenolpyruvic acid through UDP-N-acetylglucosamine 1-carboxyvinyltransferase releasing a phosphate and a UDP-N-Acetyl-alpha-D-glucosamine-enolpyruvate.
UDP-N-acetyl-D-mannosamine undergoes a NAD dependent dehydrogenation through a UDP-N-acetyl-D-mannosamine dehydrogenase, releasing NADH, a hydrogen ion and a UDP-N-Acetyl-alpha-D-mannosaminuronate, This compound is then used in the production of enterobacterial common antigens.
UDP-N-Acetyl-alpha-D-glucosamine-enolpyruvate is reduced through a NADPH dependent UDP-N-acetylenolpyruvoylglucosamine reductase, releasing a NADP and a UDP-N-acetyl-alpha-D-muramate. This compound is involved in the D-glutamine and D-glutamate metabolism.
|
Creator: miguel ramirez Created On: May 04, 2015 at 17:18 Last Updated: May 04, 2015 at 17:18 |
PW000886View Pathway |
Amino Sugar and Nucleotide Sugar Metabolism IEscherichia coli
The synthesis of amino sugars and nucleotide sugars starts with the phosphorylation of N-Acetylmuramic acid (MurNac) through its transport from the periplasmic space to the cytoplasm. Once in the cytoplasm, MurNac and water undergo a reversible reaction through a N-acetylmuramic acid 6-phosphate etherase, producing a D-lactic acid and N-Acetyl-D-Glucosamine 6-phosphate. This latter compound can also be introduced into the cytoplasm through a phosphorylating PTS permase in the inner membrane that allows for the transport of N-Acetyl-D-glucosamine from the periplasmic space. N-Acetyl-D-Glucosamine 6-phosphate can also be obtained from chitin dependent reactions. Chitin is hydrated through a bifunctional chitinase to produce chitobiose. This in turn gets hydrated by a beta-hexosaminidase to produce N-acetyl-D-glucosamine. The latter undergoes an atp dependent phosphorylation leading to the production of N-Acetyl-D-Glucosamine 6-phosphate.
N-Acetyl-D-Glucosamine 6-phosphate is then be deacetylated in order to produce Glucosamine 6-phosphate through a N-acetylglucosamine-6-phosphate deacetylase. This compound can either be isomerized or deaminated into Beta-D-fructofuranose 6-phosphate through a glucosamine-fructose-6-phosphate aminotransferase and a glucosamine-6-phosphate deaminase respectively.
Glucosamine 6-phosphate undergoes a reversible reaction to glucosamine 1 phosphate through a phosphoglucosamine mutase. This compound is then acetylated through a bifunctional protein glmU to produce a N-Acetyl glucosamine 1-phosphate.
N-Acetyl glucosamine 1-phosphate enters the nucleotide sugar synthesis by reacting with UTP and hydrogen ion through a bifunctional protein glmU releasing pyrophosphate and a Uridine diphosphate-N-acetylglucosamine.This compound can either be isomerized into a UDP-N-acetyl-D-mannosamine or undergo a reaction with phosphoenolpyruvic acid through UDP-N-acetylglucosamine 1-carboxyvinyltransferase releasing a phosphate and a UDP-N-Acetyl-alpha-D-glucosamine-enolpyruvate.
UDP-N-acetyl-D-mannosamine undergoes a NAD dependent dehydrogenation through a UDP-N-acetyl-D-mannosamine dehydrogenase, releasing NADH, a hydrogen ion and a UDP-N-Acetyl-alpha-D-mannosaminuronate, This compound is then used in the production of enterobacterial common antigens.
UDP-N-Acetyl-alpha-D-glucosamine-enolpyruvate is reduced through a NADPH dependent UDP-N-acetylenolpyruvoylglucosamine reductase, releasing a NADP and a UDP-N-acetyl-alpha-D-muramate. The latter is also involved in the D-glutamine and D-glutamate metabolism.
|
Creator: miguel ramirez Created On: May 04, 2015 at 13:25 Last Updated: May 04, 2015 at 13:25 |
PW122610View Pathway |
Amino Sugar and Nucleotide Sugar Metabolism IPseudomonas aeruginosa
The synthesis of amino sugars and nucleotide sugars starts with the phosphorylation of N-Acetylmuramic acid (MurNac) through its transport from the periplasmic space to the cytoplasm. Once in the cytoplasm, MurNac and water undergo a reversible reaction through a N-acetylmuramic acid 6-phosphate etherase, producing a D-lactic acid and N-Acetyl-D-Glucosamine 6-phosphate. This latter compound can also be introduced into the cytoplasm through a phosphorylating PTS permase in the inner membrane that allows for the transport of N-Acetyl-D-glucosamine from the periplasmic space. N-Acetyl-D-Glucosamine 6-phosphate can also be obtained from chitin dependent reactions. Chitin is hydrated through a bifunctional chitinase to produce chitobiose. This in turn gets hydrated by a beta-hexosaminidase to produce N-acetyl-D-glucosamine. The latter undergoes an atp dependent phosphorylation leading to the production of N-Acetyl-D-Glucosamine 6-phosphate.
N-Acetyl-D-Glucosamine 6-phosphate is then be deacetylated in order to produce Glucosamine 6-phosphate through a N-acetylglucosamine-6-phosphate deacetylase. This compound can either be isomerized or deaminated into Beta-D-fructofuranose 6-phosphate through a glucosamine-fructose-6-phosphate aminotransferase and a glucosamine-6-phosphate deaminase respectively.
Glucosamine 6-phosphate undergoes a reversible reaction to glucosamine 1 phosphate through a phosphoglucosamine mutase. This compound is then acetylated through a bifunctional protein glmU to produce a N-Acetyl glucosamine 1-phosphate.
N-Acetyl glucosamine 1-phosphate enters the nucleotide sugar synthesis by reacting with UTP and hydrogen ion through a bifunctional protein glmU releasing pyrophosphate and a Uridine diphosphate-N-acetylglucosamine.This compound can either be isomerized into a UDP-N-acetyl-D-mannosamine or undergo a reaction with phosphoenolpyruvic acid through UDP-N-acetylglucosamine 1-carboxyvinyltransferase releasing a phosphate and a UDP-N-Acetyl-alpha-D-glucosamine-enolpyruvate.
UDP-N-acetyl-D-mannosamine undergoes a NAD dependent dehydrogenation through a UDP-N-acetyl-D-mannosamine dehydrogenase, releasing NADH, a hydrogen ion and a UDP-N-Acetyl-alpha-D-mannosaminuronate, This compound is then used in the production of enterobacterial common antigens.
UDP-N-Acetyl-alpha-D-glucosamine-enolpyruvate is reduced through a NADPH dependent UDP-N-acetylenolpyruvoylglucosamine reductase, releasing a NADP and a UDP-N-acetyl-alpha-D-muramate. The latter is also involved in the D-glutamine and D-glutamate metabolism.
|
Creator: Ana Marcu Created On: August 12, 2019 at 18:24 Last Updated: August 12, 2019 at 18:24 |
PW002413View Pathway |
Amino Sugar and Nucleotide Sugar MetabolismSaccharomyces cerevisiae
The metabolism of aminosugars begins with D-fructose being phosphorylated resulting in the release of Beta-D-fructose 6-phosphate.
Beta-D-fructose 6-phosphate can react in 3 different paths:
1.-Beta-D-fructose 6-phosphate reacts with glucosamine 6-phosphate synthase resulting in the release of glucosamine 6-phosphate. This compound then reacts with glucosamine phosphate N-acetyltransferase resulting in the releaase of N-acetyl-D-Glucosamine 6-phosphate. This compound then reacts with a phosphoacetylglucosamine mutase resulting in the release of N-acetyl-glucosamine 1-phosphate. The latter compound reacts with a UTP through a UDP-N-acetylglucosamine pyrophosphorylase resulting in the release of UDP-N-acetylglucosamine. This compound is then used to produce chiting
2.-Beta-D-fructose 6-phosphate reacts with a mannose isomerase to release mannose 6-phosphate. The latter compound then reacts with a phosphomutase resulting in the release of mannose 1-phosphate. This in turn reacts with a GTP through a PSA1 resulting in the release of a guanosine diphosphate mannose.
3.-Beta-D-fructose 6-phosphate reacts with a glucose isomerase to release a beta-d-glucose 6 phosphate. This compound reacts wth phosphoglucomutase resulting in the release of glucose 1phosphate. This compound then reacts with a UTP through a uridinephosphoglucose pyrophosphorylase resulting in the release of UDP and a UDP-glucose.
UDP-glucose reacts with a bifunctional protein GAL10 resulting in the release of Uridine diphosphategalactose. This compound reacts in a reversible reaction with glucose 1-phosphate through a Galactose 1-phosphate uridylyltransferase resulting in the release of UDP-glucose and galactose 1-phosphate.
|
Creator: miguel ramirez Created On: January 14, 2016 at 10:39 Last Updated: January 14, 2016 at 10:39 |
PW124212View Pathway |
Amino Sugar & Nucleotide Sugar MetabolismArabidopsis thaliana
Amino and Nucleotide Sugar Metabolism is essential to the plant of Arabidopsis Thaliana, as both produce products necessary for multiple processes within the organism. Amino sugar metabolism leads to the replacing hydroxyl groups with that of amine groups that then can go on to make up polysaccharides responsible for structural integrity and glycospingolipids. Glycospingolipids is responsible for transport of certain proteins as well as make up lipid rafts. Whereas nucleotide sugar metabolism creates nucleotide sugars that act to donate glycans to residues through glycosylation, through this can produce polysaccharides. These nucleotide sugars can also act as intermediates in interconversions and in order to shuttle them to where A.thaliana requires it there are many transporters present as they are relatively big molecules.
|
Creator: Selena Created On: October 13, 2020 at 16:43 Last Updated: October 13, 2020 at 16:43 |
PW124136View Pathway |
Amino Acid MetabolismHomo sapiens
|
Creator: Guest: Anonymous Created On: August 28, 2020 at 13:45 Last Updated: August 28, 2020 at 13:45 |
PW123821View Pathway |
Amino acid degradationPseudomonas protogens Pf-5
Amino acid breakdown
|
Creator: Guest: Anonymous Created On: February 25, 2020 at 03:38 Last Updated: February 25, 2020 at 03:38 |
PW132076View Pathway |
physiological
Amine Oxidase SerotoninMus musculus
The monoamine oxidase is an enzyme that catalyzes the oxidative deamination of many amines like serotonin, norepinephrine, epinephrine, and dopamine. There are 2 isoforms of this protein: A and B. The first one is found in cells located in the periphery and breakdown serotonin, norepinephrine, epinephrine, dopamine, and tyramine. The second one, the B isoform, breakdowns phenylethylamine, norepinephrine, epinephrine, dopamine, and tyramine. This isoform is found in the extracellular tissues and mostly in the brain. An amine oxidase is an enzyme that catalyzes the oxidative cleavage of alkylamines into aldehydes and ammonia. Amine oxidases are divided into two subfamilies based on the cofactor they contain. Amine oxidases catalyze oxidative deamination reactions, producing ammonia and an aldehyde. These enzymes are critical to both homeostatic and xenobiotic metabolic pathways and are involved in the biotransformation of aminergic neurotransmitters (such as catecholamines, histamine, and serotonin) as well as toxins and carcinogens in foods and the environment.
The monoamine oxidases (MAOs) are well studied and have been targets for drug therapy for more than 60 years. MAOs are flavin-containing mitochondrial enzymes distributed throughout the body. In humans, two isoenzymes of MAO have been identified, encoded by two genes located on the X chromosome: MAO-A and MAO-B. Each isoenzyme can be distinguished by certain substrate specificities and anatomic distribution (Table 4.9), although MAO-A has the distinction of being the sole catecholamine metabolic enzyme in sympathetic neurons. In neural and other selective tissues, MAOs catalyze the first step in the degradation of catecholamines into their aldehyde intermediaries, which is further processed by catechol-O-methyltransferase.
The ubiquity of biogenic amines and their central role in neural and cardiovascular function make MAOs highly relevant to clinical anesthesia. The interactions between MAO inhibitors and drugs commonly used in anesthesia have been well described. Although genetic polymorphisms in MAO genes exist and are of great interest in the fields of neurology and psychiatry, to date none have been identified that specifically concern the handling of anesthetic agents.
|
Creator: Hayley Created On: September 15, 2023 at 14:07 Last Updated: September 15, 2023 at 14:07 |