Loader

Pathways

PathWhiz ID Pathway Meta Data

PW125461

Pw125461 View Pathway
metabolic

Acylcarnitine 7-Dodecenoylcarnitine

Homo sapiens
7-Dodecenoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 7-dodecenoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 7-dodecenoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 7-dodecenoyl-CoA reacts with L-carnitine to form 7-dodecenoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 7-dodecenoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 7-dodecenoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 7-dodecenoyl-CoA and L-carnitine. 7-Dodecenoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 7-dodecenoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

PW125318

Pw125318 View Pathway
metabolic

Acylcarnitine 7-Decenoylcarnitine

Homo sapiens
7-Decenoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 7-decenoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 7-decenoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 7-decenoyl-CoA reacts with L-carnitine to form 7-decenoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 7-decenoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 7-decenoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 7-decenoyl-CoA and L-carnitine. 7-Decenoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 7-decenoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

PW125027

Pw125027 View Pathway
metabolic

Acylcarnitine 7-[(2R,4aR,5S,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxo-octahydrocyclopenta[b]pyran-5-yl]heptanoylcarnitine

Homo sapiens
7-[(2R,4aR,5S,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxo-octahydrocyclopenta[b]pyran-5-yl]heptanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 7-[(2R,4aR,5S,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxo-octahydrocyclopenta[b]pyran-5-yl]heptanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 7-[(2R,4aR,5S,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxo-octahydrocyclopenta[b]pyran-5-yl]heptanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 7-[(2R,4aR,5S,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxo-octahydrocyclopenta[b]pyran-5-yl]heptanoyl-CoA reacts with L-carnitine to form 7-[(2R,4aR,5S,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxo-octahydrocyclopenta[b]pyran-5-yl]heptanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 7-[(2R,4aR,5S,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxo-octahydrocyclopenta[b]pyran-5-yl]heptanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 7-[(2R,4aR,5S,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxo-octahydrocyclopenta[b]pyran-5-yl]heptanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 7-[(2R,4aR,5S,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxo-octahydrocyclopenta[b]pyran-5-yl]heptanoyl-CoA and L-carnitine. 7-[(2R,4aR,5S,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxo-octahydrocyclopenta[b]pyran-5-yl]heptanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 7-[(2R,4aR,5S,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxo-octahydrocyclopenta[b]pyran-5-yl]heptanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

PW125008

Pw125008 View Pathway
metabolic

Acylcarnitine 7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoylcarnitine

Homo sapiens
7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl-CoA reacts with L-carnitine to form 7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl-CoA and L-carnitine. 7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

PW125005

Pw125005 View Pathway
metabolic

Acylcarnitine 7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoctyl]cyclopentyl]heptanoylcarnitine

Homo sapiens
7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoctyl]cyclopentyl]heptanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoctyl]cyclopentyl]heptanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoctyl]cyclopentyl]heptanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoctyl]cyclopentyl]heptanoyl-CoA reacts with L-carnitine to form 7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoctyl]cyclopentyl]heptanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoctyl]cyclopentyl]heptanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoctyl]cyclopentyl]heptanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoctyl]cyclopentyl]heptanoyl-CoA and L-carnitine. 7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoctyl]cyclopentyl]heptanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoctyl]cyclopentyl]heptanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

PW124994

Pw124994 View Pathway
metabolic

Acylcarnitine 7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoctyl]-5-oxocyclopentyl]heptanoylcarnitine

Homo sapiens
7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoctyl]-5-oxocyclopentyl]heptanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoctyl]-5-oxocyclopentyl]heptanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoctyl]-5-oxocyclopentyl]heptanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoctyl]-5-oxocyclopentyl]heptanoyl-CoA reacts with L-carnitine to form 7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoctyl]-5-oxocyclopentyl]heptanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoctyl]-5-oxocyclopentyl]heptanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoctyl]-5-oxocyclopentyl]heptanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoctyl]-5-oxocyclopentyl]heptanoyl-CoA and L-carnitine. 7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoctyl]-5-oxocyclopentyl]heptanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoctyl]-5-oxocyclopentyl]heptanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

PW124991

Pw124991 View Pathway
metabolic

Acylcarnitine 7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoylcarnitine

Homo sapiens
7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl-CoA reacts with L-carnitine to form 7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl-CoA and L-carnitine. 7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

PW124922

Pw124922 View Pathway
metabolic

Acylcarnitine 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine

Homo sapiens
7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoyl-CoA reacts with L-carnitine to form 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoyl-CoA and L-carnitine. 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]heptanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

PW124973

Pw124973 View Pathway
metabolic

Acylcarnitine 7-(5-pentylfuran-2-yl)heptanoylcarnitine

Homo sapiens
7-(5-pentylfuran-2-yl)heptanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 7-(5-pentylfuran-2-yl)heptanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 7-(5-pentylfuran-2-yl)heptanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 7-(5-pentylfuran-2-yl)heptanoyl-CoA reacts with L-carnitine to form 7-(5-pentylfuran-2-yl)heptanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 7-(5-pentylfuran-2-yl)heptanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 7-(5-pentylfuran-2-yl)heptanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 7-(5-pentylfuran-2-yl)heptanoyl-CoA and L-carnitine. 7-(5-pentylfuran-2-yl)heptanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 7-(5-pentylfuran-2-yl)heptanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.

PW124971

Pw124971 View Pathway
metabolic

Acylcarnitine 7-(5-hexyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine

Homo sapiens
7-(5-hexyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 7-(5-hexyl-3,4-dimethylfuran-2-yl)heptanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 7-(5-hexyl-3,4-dimethylfuran-2-yl)heptanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 7-(5-hexyl-3,4-dimethylfuran-2-yl)heptanoyl-CoA reacts with L-carnitine to form 7-(5-hexyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 7-(5-hexyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 7-(5-hexyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 7-(5-hexyl-3,4-dimethylfuran-2-yl)heptanoyl-CoA and L-carnitine. 7-(5-hexyl-3,4-dimethylfuran-2-yl)heptanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 7-(5-hexyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.