PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW125758View Pathway |
Acylcarnitine 5-hydroxyhexadecanedioylcarnitineHomo sapiens
5-hydroxyhexadecanedioylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 5-hydroxyhexadecanedioic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 5-hydroxyhexadecanedioyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 5-hydroxyhexadecanedioyl-CoA reacts with L-carnitine to form 5-hydroxyhexadecanedioylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 5-hydroxyhexadecanedioylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 5-hydroxyhexadecanedioylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 5-hydroxyhexadecanedioyl-CoA and L-carnitine. 5-hydroxyhexadecanedioyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 5-hydroxyhexadecanedioylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
|
Creator: Jeanne Coleongco Created On: April 17, 2021 at 03:02 Last Updated: April 17, 2021 at 03:02 |
PW124804View Pathway |
Acylcarnitine 5-hydroxyheptanoylcarnitineHomo sapiens
5-hydroxyheptanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 5-hydroxyheptanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 5-hydroxyheptanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 5-hydroxyheptanoyl-CoA reacts with L-carnitine to form 5-hydroxyheptanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 5-hydroxyheptanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 5-hydroxyheptanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 5-hydroxyheptanoyl-CoA and L-carnitine. 5-hydroxyheptanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 5-hydroxyheptanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
|
Creator: Jeanne Coleongco Created On: April 16, 2021 at 16:25 Last Updated: April 16, 2021 at 16:25 |
PW125551View Pathway |
Acylcarnitine 5-HydroxydodecanoylcarnitineHomo sapiens
5-Hydroxydodecanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 5-hydroxydodecanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 5-hydroxydodecanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 5-hydroxydodecanoyl-CoA reacts with L-carnitine to form 5-hydroxydodecanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 5-hydroxydodecanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 5-hydroxydodecanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 5-hydroxydodecanoyl-CoA and L-carnitine. 5-Hydroxydodecanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 5-hydroxydodecanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
|
Creator: Jeanne Coleongco Created On: April 17, 2021 at 01:27 Last Updated: April 17, 2021 at 01:27 |
PW125536View Pathway |
Acylcarnitine 5-HydroxydodecanedioylcarnitineHomo sapiens
5-Hydroxydodecanedioylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 5-hydroxydodecanedioic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 5-hydroxydodecanedioyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 5-hydroxydodecanedioyl-CoA reacts with L-carnitine to form 5-hydroxydodecanedioylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 5-hydroxydodecanedioylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 5-hydroxydodecanedioylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 5-hydroxydodecanedioyl-CoA and L-carnitine. 5-Hydroxydodecanedioyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 5-hydroxydodecanedioylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
|
Creator: Jeanne Coleongco Created On: April 17, 2021 at 01:20 Last Updated: April 17, 2021 at 01:20 |
PW125496View Pathway |
Acylcarnitine 5-Hydroxydodeca-7,9-dienoylcarnitineHomo sapiens
5-Hydroxydodeca-7,9-dienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 5-hydroxydodeca-7,9-dienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 5-hydroxydodeca-7,9-dienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 5-hydroxydodeca-7,9-dienoyl-CoA reacts with L-carnitine to form 5-hydroxydodeca-7,9-dienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 5-hydroxydodeca-7,9-dienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 5-hydroxydodeca-7,9-dienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 5-hydroxydodeca-7,9-dienoyl-CoA and L-carnitine. 5-Hydroxydodeca-7,9-dienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 5-hydroxydodeca-7,9-dienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
|
Creator: Jeanne Coleongco Created On: April 17, 2021 at 01:01 Last Updated: April 17, 2021 at 01:01 |
PW125310View Pathway |
Acylcarnitine 5-HydroxydecanoylcarnitineHomo sapiens
5-Hydroxydecanoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 5-hydroxydecanoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 5-hydroxydecanoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 5-hydroxydecanoyl-CoA reacts with L-carnitine to form 5-hydroxydecanoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 5-hydroxydecanoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 5-hydroxydecanoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 5-hydroxydecanoyl-CoA and L-carnitine. 5-Hydroxydecanoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 5-hydroxydecanoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
|
Creator: Jeanne Coleongco Created On: April 16, 2021 at 23:33 Last Updated: April 16, 2021 at 23:33 |
PW125381View Pathway |
Acylcarnitine 5-HydroxydecanedioylcarnitineHomo sapiens
5-Hydroxydecanedioylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 5-hydroxydecanedioic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 5-hydroxydecanedioyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 5-hydroxydecanedioyl-CoA reacts with L-carnitine to form 5-hydroxydecanedioylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 5-hydroxydecanedioylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 5-hydroxydecanedioylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 5-hydroxydecanedioyl-CoA and L-carnitine. 5-Hydroxydecanedioyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 5-hydroxydecanedioylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
|
Creator: Jeanne Coleongco Created On: April 17, 2021 at 00:08 Last Updated: April 17, 2021 at 00:08 |
PW125324View Pathway |
Acylcarnitine 5-Hydroxydec-8-enoylcarnitineHomo sapiens
5-Hydroxydec-8-enoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 5-hydroxydec-8-enoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 5-hydroxydec-8-enoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 5-hydroxydec-8-enoyl-CoA reacts with L-carnitine to form 5-hydroxydec-8-enoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 5-hydroxydec-8-enoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 5-hydroxydec-8-enoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 5-hydroxydec-8-enoyl-CoA and L-carnitine. 5-Hydroxydec-8-enoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 5-hydroxydec-8-enoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
|
Creator: Jeanne Coleongco Created On: April 16, 2021 at 23:40 Last Updated: April 16, 2021 at 23:40 |
PW125327View Pathway |
Acylcarnitine 5-Hydroxydec-7-enoylcarnitineHomo sapiens
5-Hydroxydec-7-enoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 5-hydroxydec-7-enoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 5-hydroxydec-7-enoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 5-hydroxydec-7-enoyl-CoA reacts with L-carnitine to form 5-hydroxydec-7-enoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 5-hydroxydec-7-enoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 5-hydroxydec-7-enoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 5-hydroxydec-7-enoyl-CoA and L-carnitine. 5-Hydroxydec-7-enoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 5-hydroxydec-7-enoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
|
Creator: Jeanne Coleongco Created On: April 16, 2021 at 23:41 Last Updated: April 16, 2021 at 23:41 |
PW125326View Pathway |
Acylcarnitine 5-Hydroxydec-6-enoylcarnitineHomo sapiens
5-Hydroxydec-6-enoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 5-hydroxydec-6-enoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 5-hydroxydec-6-enoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 5-hydroxydec-6-enoyl-CoA reacts with L-carnitine to form 5-hydroxydec-6-enoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 5-hydroxydec-6-enoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 5-hydroxydec-6-enoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 5-hydroxydec-6-enoyl-CoA and L-carnitine. 5-Hydroxydec-6-enoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 5-hydroxydec-6-enoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
|
Creator: Jeanne Coleongco Created On: April 16, 2021 at 23:41 Last Updated: April 16, 2021 at 23:41 |