PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW327544View Pathway |
Tyrosine BiosynthesisDesulfovibrio sp. 3_1_syn3
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 12:02 Last Updated: October 15, 2024 at 12:02 |
PW327549View Pathway |
Tyrosine BiosynthesisCampylobacter jejuni subsp. jejuni ICDCCJ07004
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 12:03 Last Updated: October 15, 2024 at 12:03 |
PW327568View Pathway |
Tyrosine BiosynthesisCedecea davisae DSM 4568
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 12:08 Last Updated: October 15, 2024 at 12:08 |
PW327563View Pathway |
Tyrosine BiosynthesisAnaerobiospirillum succiniciproducens DSM 6400
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 12:06 Last Updated: October 15, 2024 at 12:06 |
PW327556View Pathway |
Tyrosine BiosynthesisHelicobacter canadensis MIT 98-5491
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 12:05 Last Updated: October 15, 2024 at 12:05 |
PW327417View Pathway |
Tyrosine BiosynthesisBacteroides timonensis AP1
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 11:32 Last Updated: October 15, 2024 at 11:32 |
PW299591View Pathway |
Tyrosine BiosynthesisOxalobacter formigenes OXCC13
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: September 24, 2024 at 19:13 Last Updated: September 24, 2024 at 19:13 |
PW299642View Pathway |
Tyrosine BiosynthesisNeisseria mucosa ATCC 25996
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: September 24, 2024 at 19:37 Last Updated: September 24, 2024 at 19:37 |
PW299623View Pathway |
Tyrosine BiosynthesisNeisseria cinerea ATCC 14685
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: September 24, 2024 at 19:28 Last Updated: September 24, 2024 at 19:28 |
PW300328View Pathway |
Tyrosine BiosynthesisCampylobacter jejuni subsp. jejuni 81-176
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: September 25, 2024 at 16:07 Last Updated: September 25, 2024 at 16:07 |