Loader

Pathways

PathWhiz ID Pathway Meta Data

PW121763

Pw121763 View Pathway
disease

Tyrosinemia Type I

Mus musculus
Tyrosinemia type I, also known as fumarylacetoacetase or FAH deficiency, is the most severe type of tyrosinemia, a buildup of tyrosine in the body. It is caused by an autosomal recessive mutation in the the FAH gene that encodes for fumarylacetoacetase, an enzyme that is responsible for the last of five steps that are involved in the metabolic breakdown of tyrosine in the liver and kidneys. The lack of this enzyme's function leads to a buildup of 4-fumarylacetoacetic acid as it couldn't be broken down to fumaric acid and acetoacetic acid. This also leads to an increased concentration of maleylacetoacetic acid. This eventually leads to the increased concentration of L-tyrosine in the body. Symptoms of tyrosinemia type I include jaundice and an enlarged liver, kidney dysfunction, as well as a failure to grow, as foods with high protein and amino acids lead to increased symptoms. Additionally, individuals are more at risk for future liver cancer.

PW121815

Pw121815 View Pathway
disease

Tyrosinemia, Transient, of the Newborn

Mus musculus
A transient defect in tyrosine metabolism is a common aminoacidopathy in the premature and full-term human infant. This disorder, termed neonatal tyrosinemia, was first described by Levine and Gordon in 1939. In the intervening years other workers have studied this disorder, and have noted the concurrence of tyrosinemia and tyrosyluria. In a current survey of 15,000 infants, 6 mild tyrosinemia occurred during the first week of life in 10% of full-term infants, and severe tyrosinemia occurred in approximately 30% of premature infants. The enzymatic basis of neonatal tyrosinemia is complex and involves the susceptibility of p-hydroxyphenylpyruvic acid oxidase to inhibition in the presence of its substrate, p-hydroxyphenylpyruvic acid and derivatives. The inhibition is reversible by removal of excess substrate and by reducing agents such as ascorbic acid, 2, 6-dichiorophenolindophenol, and a number of hydroquinone and phenylenediamine compounds.

PW127156

Pw127156 View Pathway
disease

Tyrosinemia, Transient, of the Newborn

Homo sapiens
A transient defect in tyrosine metabolism is a common aminoacidopathy in the premature and full-term human infant. This disorder, termed neonatal tyrosinemia, was first described by Levine and Gordon in 1939. In the intervening years other workers have studied this disorder, and have noted the concurrence of tyrosinemia and tyrosyluria. In a current survey of 15,000 infants, 6 mild tyrosinemia occurred during the first week of life in 10% of full-term infants, and severe tyrosinemia occurred in approximately 30% of premature infants. The enzymatic basis of neonatal tyrosinemia is complex and involves the susceptibility of p-hydroxyphenylpyruvic acid oxidase to inhibition in the presence of its substrate, p-hydroxyphenylpyruvic acid and derivatives. The inhibition is reversible by removal of excess substrate and by reducing agents such as ascorbic acid, 2, 6-dichiorophenolindophenol, and a number of hydroquinone and phenylenediamine compounds.

PW000470

Pw000470 View Pathway
disease

Tyrosinemia, Transient, of the Newborn

Homo sapiens
A transient defect in tyrosine metabolism is a common aminoacidopathy in the premature and full-term human infant. This disorder, termed neonatal tyrosinemia, was first described by Levine and Gordon in 1939. In the intervening years other workers have studied this disorder, and have noted the concurrence of tyrosinemia and tyrosyluria. In a current survey of 15,000 infants, 6 mild tyrosinemia occurred during the first week of life in 10% of full-term infants, and severe tyrosinemia occurred in approximately 30% of premature infants. The enzymatic basis of neonatal tyrosinemia is complex and involves the susceptibility of p-hydroxyphenylpyruvic acid oxidase to inhibition in the presence of its substrate, p-hydroxyphenylpyruvic acid and derivatives. The inhibition is reversible by removal of excess substrate and by reducing agents such as ascorbic acid, 2, 6-dichiorophenolindophenol, and a number of hydroquinone and phenylenediamine compounds.

PW122040

Pw122040 View Pathway
disease

Tyrosinemia, Transient, of the Newborn

Rattus norvegicus
A transient defect in tyrosine metabolism is a common aminoacidopathy in the premature and full-term human infant. This disorder, termed neonatal tyrosinemia, was first described by Levine and Gordon in 1939. In the intervening years other workers have studied this disorder, and have noted the concurrence of tyrosinemia and tyrosyluria. In a current survey of 15,000 infants, 6 mild tyrosinemia occurred during the first week of life in 10% of full-term infants, and severe tyrosinemia occurred in approximately 30% of premature infants. The enzymatic basis of neonatal tyrosinemia is complex and involves the susceptibility of p-hydroxyphenylpyruvic acid oxidase to inhibition in the presence of its substrate, p-hydroxyphenylpyruvic acid and derivatives. The inhibition is reversible by removal of excess substrate and by reducing agents such as ascorbic acid, 2, 6-dichiorophenolindophenol, and a number of hydroquinone and phenylenediamine compounds.

PW146655

Pw146655 View Pathway
drug action

Tyrothricin Drug Metabolism Action Pathway

Homo sapiens

PW146061

Pw146061 View Pathway
drug action

Ubidecarenone Drug Metabolism Action Pathway

Homo sapiens

PW147119

Pw147119 View Pathway
metabolic

Ubiquinol Drug Metabolism Pathway

Homo sapiens
Gadoversetamide is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Gadoversetamide passes through the liver and is then excreted from the body mainly through the kidney.

PW126505

Pw126505 View Pathway
metabolic

Ubiquinone and other terpenoid-quinone biosynthesis rep test

Arabidopsis thaliana

PW126504

Pw126504 View Pathway
metabolic

Ubiquinone and other terpenoid-quinone biosynthesis Replication Test

Arabidopsis thaliana