PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW337777View Pathway |
Xylose Degradation IParasutterella excrementihominis YIT 11859
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 25, 2024 at 09:33 Last Updated: October 25, 2024 at 09:33 |
PW337835View Pathway |
Xylose Degradation IProvidencia alcalifaciens DSM 30120
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 25, 2024 at 15:11 Last Updated: October 25, 2024 at 15:11 |
PW354579View Pathway |
Xylose Degradation IEscherichia coli APEC O1
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: November 09, 2024 at 20:53 Last Updated: November 09, 2024 at 20:53 |
PW354581View Pathway |
Xylose Degradation IEscherichia coli HS
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: November 09, 2024 at 20:54 Last Updated: November 09, 2024 at 20:54 |
PW337830View Pathway |
Xylose Degradation IEdwardsiella tarda ATCC 23685
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 25, 2024 at 15:04 Last Updated: October 25, 2024 at 15:04 |
PW337885View Pathway |
Xylose Degradation IMitsuokella multacida DSM 20544
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 25, 2024 at 16:01 Last Updated: October 25, 2024 at 16:01 |
PW354585View Pathway |
Xylose Degradation IEscherichia coli UMN026
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: November 09, 2024 at 20:55 Last Updated: November 09, 2024 at 20:55 |
PW354580View Pathway |
Xylose Degradation IEscherichia coli E24377A
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: November 09, 2024 at 20:54 Last Updated: November 09, 2024 at 20:54 |
PW354578View Pathway |
Xylose Degradation IEscherichia coli 536
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: November 09, 2024 at 20:53 Last Updated: November 09, 2024 at 20:53 |
PW337668View Pathway |
Xylose Degradation IBacteroides finegoldii DSM 17565
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 24, 2024 at 18:58 Last Updated: October 24, 2024 at 18:58 |