Loader

Pathways

PathWhiz ID Pathway Meta Data

PW126201

Pw126201 View Pathway
metabolic

1-Methylhistidine Metabolism

Homo sapiens
Methylhistidine is a modified amino acid that is produced in myocytes during the methylation of actin and myosin. It is also formed from the methylation of L-histidine, which takes the methyl group from S-adenosylmethionine and forms S-adenosylhomocysteine as a byproduct. After its formation in the myocytes, methylhistidine enters the blood stream and travels to the kidneys, where it is excreted in the urine. Methylhistidine is present in the blood and urine in higher concentrations after skeletal muscle protein breakdown, which can occur due to disease or injury. Because of this, it can be used to judge how much muscle breakdown is occurring. Methylhistidine levels are also affected by diet, and may differ between vegetarian diets and those containing meats.

PW002064

Pw002064 View Pathway
metabolic

1,6-Anhydro-N-acetylmuramic Acid Recycling

Escherichia coli
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.

PW123548

Pw123548 View Pathway
metabolic

1,6-Anhydro-N-acetylmuramic Acid Recycling

Pseudomonas aeruginosa
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.

PW146751

Pw146751 View Pathway
drug action

1,2-icosapentoyl-sn-glycero-3-phosphoserine Drug Metabolism Action Pathway

Homo sapiens

PW146752

Pw146752 View Pathway
drug action

1,2-Distearoyllecithin Drug Metabolism Action Pathway

Homo sapiens

PW146541

Pw146541 View Pathway
drug action

1,2-Benzodiazepine Drug Metabolism Action Pathway

Homo sapiens

PW132374

Pw132374 View Pathway
metabolic

1,2-Benzodiazepine Drug Metabolism

Homo sapiens
1,2-Benzodiazepine is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. 1,2-Benzodiazepine passes through the liver and is then excreted from the body mainly through the kidney.

PW147109

Pw147109 View Pathway
metabolic

1,1-Dimethylbiguanide Drug Metabolism Pathway

Homo sapiens
Gadoversetamide is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Gadoversetamide passes through the liver and is then excreted from the body mainly through the kidney.

PW123790

Pw123790 View Pathway
metabolic

1

Alloactinosynnema sp. L-07

PW126898

Pw126898 View Pathway
metabolic

(-)-camphor biosynthesis

Tanacetum vulgare
(-)-camphor biosynthesis occurs in the species Tanactum vulgare, or the tansy.