Loader

Pathways

PathWhiz ID Pathway Meta Data

PW352902

Pw352902 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Escherichia coli S88
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW336576

Pw336576 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Bacteroides cellulosilyticus DSM 14838
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW336754

Pw336754 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Neisseria subflava NJ9703
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW336778

Pw336778 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Cedecea davisae DSM 4568
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW336797

Pw336797 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Hafnia alvei ATCC 51873
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW336824

Pw336824 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Grimontia hollisae CIP 101886
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW336812

Pw336812 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Haemophilus haemolyticus M19501
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW336747

Pw336747 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Eikenella corrodens ATCC 23834
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW352898

Pw352898 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Escherichia coli O127:H6 str. E2348/69
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW352901

Pw352901 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Escherichia coli IAI1
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)