Loader

Pathways

PathWhiz ID Pathway Meta Data

PW337671

Pw337671 View Pathway
metabolic

Xylose Degradation I

Bacteroides nordii CL02T12C05
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW337734

Pw337734 View Pathway
metabolic

Xylose Degradation I

Parabacteroides johnsonii DSM 18315
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW337777

Pw337777 View Pathway
metabolic

Xylose Degradation I

Parasutterella excrementihominis YIT 11859
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW337835

Pw337835 View Pathway
metabolic

Xylose Degradation I

Providencia alcalifaciens DSM 30120
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW354579

Pw354579 View Pathway
metabolic

Xylose Degradation I

Escherichia coli APEC O1
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW354581

Pw354581 View Pathway
metabolic

Xylose Degradation I

Escherichia coli HS
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW337830

Pw337830 View Pathway
metabolic

Xylose Degradation I

Edwardsiella tarda ATCC 23685
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW337885

Pw337885 View Pathway
metabolic

Xylose Degradation I

Mitsuokella multacida DSM 20544
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW337668

Pw337668 View Pathway
metabolic

Xylose Degradation I

Bacteroides finegoldii DSM 17565
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW337815

Pw337815 View Pathway
metabolic

Xylose Degradation I

Citrobacter youngae ATCC 29220
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.