Loader

Pathways

PathWhiz ID Pathway Meta Data

PW014584

Pw014584 View Pathway
metabolic

Triacylglycerol Degradation TG(20:1(11Z)/20:1(11Z)/20:0)

Arabidopsis thaliana
In higher plants, the primary seed storage reserve is triacylglycerol rather than carbohydrates. Thus, triacylglycerol degradation is an important pathway from which plants obtain energy for growth. First, triacylglycerol lipase, an enzyme localized to the oil body (storage vacuole) membrane, catalyzes the conversion of a triglyceride into a 1,2-diglyceride. Second, the predicted enzyme diglyceride lipase (coloured orange in the image) is theorized to catalyze the conversion of a 1,2-diglyceride iinto a 2-acylglycerol. Third, a 2-acylglycerol is spontaneously converted into a 1-monoglyceride. Fourth, acylhydrolase catalyzes the conversion of a 1-monoglyceride into glycerol. Fifth, glycerol kinase catalyzes the conversion of glycerol into glycerol 3-phosphate. Sixth, glycerol-3-phosphate dehydrogenase (coloured dark green in the image), localized to the mitochondrial inner membrane, catalyzes the conversion of glycerol 3-phosphate into glycerone phosphate.

PW014585

Pw014585 View Pathway
metabolic

Triacylglycerol Degradation TG(20:1(11Z)/20:1(11Z)/20:1(11Z))

Arabidopsis thaliana
In higher plants, the primary seed storage reserve is triacylglycerol rather than carbohydrates. Thus, triacylglycerol degradation is an important pathway from which plants obtain energy for growth. First, triacylglycerol lipase, an enzyme localized to the oil body (storage vacuole) membrane, catalyzes the conversion of a triglyceride into a 1,2-diglyceride. Second, the predicted enzyme diglyceride lipase (coloured orange in the image) is theorized to catalyze the conversion of a 1,2-diglyceride iinto a 2-acylglycerol. Third, a 2-acylglycerol is spontaneously converted into a 1-monoglyceride. Fourth, acylhydrolase catalyzes the conversion of a 1-monoglyceride into glycerol. Fifth, glycerol kinase catalyzes the conversion of glycerol into glycerol 3-phosphate. Sixth, glycerol-3-phosphate dehydrogenase (coloured dark green in the image), localized to the mitochondrial inner membrane, catalyzes the conversion of glycerol 3-phosphate into glycerone phosphate.

PW014586

Pw014586 View Pathway
metabolic

Triacylglycerol Degradation TG(20:1(11Z)/20:1(11Z)/20:1(13Z))

Arabidopsis thaliana
In higher plants, the primary seed storage reserve is triacylglycerol rather than carbohydrates. Thus, triacylglycerol degradation is an important pathway from which plants obtain energy for growth. First, triacylglycerol lipase, an enzyme localized to the oil body (storage vacuole) membrane, catalyzes the conversion of a triglyceride into a 1,2-diglyceride. Second, the predicted enzyme diglyceride lipase (coloured orange in the image) is theorized to catalyze the conversion of a 1,2-diglyceride iinto a 2-acylglycerol. Third, a 2-acylglycerol is spontaneously converted into a 1-monoglyceride. Fourth, acylhydrolase catalyzes the conversion of a 1-monoglyceride into glycerol. Fifth, glycerol kinase catalyzes the conversion of glycerol into glycerol 3-phosphate. Sixth, glycerol-3-phosphate dehydrogenase (coloured dark green in the image), localized to the mitochondrial inner membrane, catalyzes the conversion of glycerol 3-phosphate into glycerone phosphate.

PW014587

Pw014587 View Pathway
metabolic

Triacylglycerol Degradation TG(20:1(11Z)/20:1(11Z)/22:0)

Arabidopsis thaliana
In higher plants, the primary seed storage reserve is triacylglycerol rather than carbohydrates. Thus, triacylglycerol degradation is an important pathway from which plants obtain energy for growth. First, triacylglycerol lipase, an enzyme localized to the oil body (storage vacuole) membrane, catalyzes the conversion of a triglyceride into a 1,2-diglyceride. Second, the predicted enzyme diglyceride lipase (coloured orange in the image) is theorized to catalyze the conversion of a 1,2-diglyceride iinto a 2-acylglycerol. Third, a 2-acylglycerol is spontaneously converted into a 1-monoglyceride. Fourth, acylhydrolase catalyzes the conversion of a 1-monoglyceride into glycerol. Fifth, glycerol kinase catalyzes the conversion of glycerol into glycerol 3-phosphate. Sixth, glycerol-3-phosphate dehydrogenase (coloured dark green in the image), localized to the mitochondrial inner membrane, catalyzes the conversion of glycerol 3-phosphate into glycerone phosphate.

PW014588

Pw014588 View Pathway
metabolic

Triacylglycerol Degradation TG(20:1(11Z)/20:1(11Z)/22:1(13Z))

Arabidopsis thaliana
In higher plants, the primary seed storage reserve is triacylglycerol rather than carbohydrates. Thus, triacylglycerol degradation is an important pathway from which plants obtain energy for growth. First, triacylglycerol lipase, an enzyme localized to the oil body (storage vacuole) membrane, catalyzes the conversion of a triglyceride into a 1,2-diglyceride. Second, the predicted enzyme diglyceride lipase (coloured orange in the image) is theorized to catalyze the conversion of a 1,2-diglyceride iinto a 2-acylglycerol. Third, a 2-acylglycerol is spontaneously converted into a 1-monoglyceride. Fourth, acylhydrolase catalyzes the conversion of a 1-monoglyceride into glycerol. Fifth, glycerol kinase catalyzes the conversion of glycerol into glycerol 3-phosphate. Sixth, glycerol-3-phosphate dehydrogenase (coloured dark green in the image), localized to the mitochondrial inner membrane, catalyzes the conversion of glycerol 3-phosphate into glycerone phosphate.

PW014589

Pw014589 View Pathway
metabolic

Triacylglycerol Degradation TG(20:1(11Z)/20:1(13Z)/16:0)

Arabidopsis thaliana
In higher plants, the primary seed storage reserve is triacylglycerol rather than carbohydrates. Thus, triacylglycerol degradation is an important pathway from which plants obtain energy for growth. First, triacylglycerol lipase, an enzyme localized to the oil body (storage vacuole) membrane, catalyzes the conversion of a triglyceride into a 1,2-diglyceride. Second, the predicted enzyme diglyceride lipase (coloured orange in the image) is theorized to catalyze the conversion of a 1,2-diglyceride iinto a 2-acylglycerol. Third, a 2-acylglycerol is spontaneously converted into a 1-monoglyceride. Fourth, acylhydrolase catalyzes the conversion of a 1-monoglyceride into glycerol. Fifth, glycerol kinase catalyzes the conversion of glycerol into glycerol 3-phosphate. Sixth, glycerol-3-phosphate dehydrogenase (coloured dark green in the image), localized to the mitochondrial inner membrane, catalyzes the conversion of glycerol 3-phosphate into glycerone phosphate.

PW014590

Pw014590 View Pathway
metabolic

Triacylglycerol Degradation TG(20:1(11Z)/20:1(13Z)/18:0)

Arabidopsis thaliana
In higher plants, the primary seed storage reserve is triacylglycerol rather than carbohydrates. Thus, triacylglycerol degradation is an important pathway from which plants obtain energy for growth. First, triacylglycerol lipase, an enzyme localized to the oil body (storage vacuole) membrane, catalyzes the conversion of a triglyceride into a 1,2-diglyceride. Second, the predicted enzyme diglyceride lipase (coloured orange in the image) is theorized to catalyze the conversion of a 1,2-diglyceride iinto a 2-acylglycerol. Third, a 2-acylglycerol is spontaneously converted into a 1-monoglyceride. Fourth, acylhydrolase catalyzes the conversion of a 1-monoglyceride into glycerol. Fifth, glycerol kinase catalyzes the conversion of glycerol into glycerol 3-phosphate. Sixth, glycerol-3-phosphate dehydrogenase (coloured dark green in the image), localized to the mitochondrial inner membrane, catalyzes the conversion of glycerol 3-phosphate into glycerone phosphate.

PW014592

Pw014592 View Pathway
metabolic

Triacylglycerol Degradation TG(20:1(11Z)/20:1(13Z)/18:1(11Z))

Arabidopsis thaliana
In higher plants, the primary seed storage reserve is triacylglycerol rather than carbohydrates. Thus, triacylglycerol degradation is an important pathway from which plants obtain energy for growth. First, triacylglycerol lipase, an enzyme localized to the oil body (storage vacuole) membrane, catalyzes the conversion of a triglyceride into a 1,2-diglyceride. Second, the predicted enzyme diglyceride lipase (coloured orange in the image) is theorized to catalyze the conversion of a 1,2-diglyceride iinto a 2-acylglycerol. Third, a 2-acylglycerol is spontaneously converted into a 1-monoglyceride. Fourth, acylhydrolase catalyzes the conversion of a 1-monoglyceride into glycerol. Fifth, glycerol kinase catalyzes the conversion of glycerol into glycerol 3-phosphate. Sixth, glycerol-3-phosphate dehydrogenase (coloured dark green in the image), localized to the mitochondrial inner membrane, catalyzes the conversion of glycerol 3-phosphate into glycerone phosphate.

PW014591

Pw014591 View Pathway
metabolic

Triacylglycerol Degradation TG(20:1(11Z)/20:1(13Z)/18:1(9Z))

Arabidopsis thaliana
In higher plants, the primary seed storage reserve is triacylglycerol rather than carbohydrates. Thus, triacylglycerol degradation is an important pathway from which plants obtain energy for growth. First, triacylglycerol lipase, an enzyme localized to the oil body (storage vacuole) membrane, catalyzes the conversion of a triglyceride into a 1,2-diglyceride. Second, the predicted enzyme diglyceride lipase (coloured orange in the image) is theorized to catalyze the conversion of a 1,2-diglyceride iinto a 2-acylglycerol. Third, a 2-acylglycerol is spontaneously converted into a 1-monoglyceride. Fourth, acylhydrolase catalyzes the conversion of a 1-monoglyceride into glycerol. Fifth, glycerol kinase catalyzes the conversion of glycerol into glycerol 3-phosphate. Sixth, glycerol-3-phosphate dehydrogenase (coloured dark green in the image), localized to the mitochondrial inner membrane, catalyzes the conversion of glycerol 3-phosphate into glycerone phosphate.

PW014593

Pw014593 View Pathway
metabolic

Triacylglycerol Degradation TG(20:1(11Z)/20:1(13Z)/18:2(9Z,12Z))

Arabidopsis thaliana
In higher plants, the primary seed storage reserve is triacylglycerol rather than carbohydrates. Thus, triacylglycerol degradation is an important pathway from which plants obtain energy for growth. First, triacylglycerol lipase, an enzyme localized to the oil body (storage vacuole) membrane, catalyzes the conversion of a triglyceride into a 1,2-diglyceride. Second, the predicted enzyme diglyceride lipase (coloured orange in the image) is theorized to catalyze the conversion of a 1,2-diglyceride iinto a 2-acylglycerol. Third, a 2-acylglycerol is spontaneously converted into a 1-monoglyceride. Fourth, acylhydrolase catalyzes the conversion of a 1-monoglyceride into glycerol. Fifth, glycerol kinase catalyzes the conversion of glycerol into glycerol 3-phosphate. Sixth, glycerol-3-phosphate dehydrogenase (coloured dark green in the image), localized to the mitochondrial inner membrane, catalyzes the conversion of glycerol 3-phosphate into glycerone phosphate.