PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW327369View Pathway |
Tyrosine BiosynthesisPseudomonas fluorescens Pf0-1
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 11:20 Last Updated: October 15, 2024 at 11:20 |
PW327427View Pathway |
Tyrosine BiosynthesisBacteroides sp. 3_1_23
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 11:34 Last Updated: October 15, 2024 at 11:34 |
PW327422View Pathway |
Tyrosine BiosynthesisBacteroides sp. 1_1_30
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 11:33 Last Updated: October 15, 2024 at 11:33 |
PW327496View Pathway |
Tyrosine BiosynthesisCetobacterium somerae ATCC BAA-474
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 11:50 Last Updated: October 15, 2024 at 11:50 |
PW327509View Pathway |
Tyrosine BiosynthesisFusobacterium nucleatum subsp. vincentii 4_1_13
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 11:53 Last Updated: October 15, 2024 at 11:53 |
PW327504View Pathway |
Tyrosine BiosynthesisFusobacterium nucleatum subsp. animalis 7_1
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 11:52 Last Updated: October 15, 2024 at 11:52 |
PW327511View Pathway |
Tyrosine BiosynthesisFusobacterium periodonticum 2_1_31
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 11:54 Last Updated: October 15, 2024 at 11:54 |
PW327516View Pathway |
Tyrosine BiosynthesisBrevundimonas diminuta 470-4
Tyrosine is one of the amino acid used in protein synthesis. The tyrosine biosynthesis pathways is connected with the chorismate biosynthesis pathway. Chorismate biosynthesis produce the chorismate, which can further be converted to prephenate by T-protein. Combined with cofactor, NAD, prephenate has been further converted to 4-Hydroxyphenylpyruvic acid by T-protein with generated NADH and carbon dioxide. Tyrosine aminotransferase catalyzes 4-Hydroxyphenylpyruvic acid to tyrosine, and also converts glutamic acid to oxoglutaric acid. Tyrosine will be further catalyzed into various molecules such as 2-iminoacetate, p-Cresol, 5'Deoxyadenosine and L-Methionine; or it will be exported from cell via the lysine exporter.
|
Creator: Julia Wakoli Created On: October 15, 2024 at 11:55 Last Updated: October 15, 2024 at 11:55 |
PW144277View Pathway |
drug action
Tyrosine Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 13:05 Last Updated: October 07, 2023 at 13:05 |
PW000473View Pathway |
disease
Tyrosine Hydroxylase DeficiencyHomo sapiens
Tyrosine Hydroxylase (TH) Deficiency is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of catecholamines pathways. The disorder is caused by defects in the Tyrosine hydroxylase (TH) gene which encodes for the enzyme tyrosine hydroxylase. This enzyme is part of the production of catecholamines such as dopamine, norepinephrine and epinephrine are all essential for normal nervous system function. Dopamine transmits signals to help the brain control physical movement and emotional behavior. Norepinephrine and epinephrine are involved in the autonomic nervous system. Mutations in the TH gene result in reduced activity of the tyrosine hydroxylase enzyme. As a result, the body produces less dopamine, norepinephrine and epinephrine. Symptoms of the disorder include abnormal movements, autonomic dysfunction, and other neurological problems. Treatments can include the administration of levodopa; however patient responses can vary greatly. The frequency of Tyrosine Hydroxylase Deficiency is unknown.
|
Creator: WishartLab Created On: August 29, 2013 at 10:38 Last Updated: August 29, 2013 at 10:38 |