PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW337883View Pathway |
Xylose Degradation IMegamonas funiformis YIT 11815
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 25, 2024 at 15:59 Last Updated: October 25, 2024 at 15:59 |
PW337679View Pathway |
Xylose Degradation IBacteroides xylanisolvens SD CC 1b
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 24, 2024 at 19:11 Last Updated: October 24, 2024 at 19:11 |
PW337838View Pathway |
Xylose Degradation IProvidencia stuartii ATCC 25827
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 25, 2024 at 15:15 Last Updated: October 25, 2024 at 15:15 |
PW354595View Pathway |
Xylose Degradation IEscherichia coli O55:H7 str. CB9615
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: November 09, 2024 at 20:58 Last Updated: November 09, 2024 at 20:58 |
PW337700View Pathway |
Xylose Degradation IOdoribacter laneus YIT 12061
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 24, 2024 at 19:33 Last Updated: October 24, 2024 at 19:33 |
PW337705View Pathway |
Xylose Degradation IParaprevotella clara YIT 11840
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 24, 2024 at 19:38 Last Updated: October 24, 2024 at 19:38 |
PW337731View Pathway |
Xylose Degradation IAlistipes indistinctus YIT 12060
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 24, 2024 at 20:05 Last Updated: October 24, 2024 at 20:05 |
PW337774View Pathway |
Xylose Degradation ILautropia mirabilis ATCC 51599
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 25, 2024 at 09:29 Last Updated: October 25, 2024 at 09:29 |
PW337813View Pathway |
Xylose Degradation ICitrobacter amalonaticus Y19
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 25, 2024 at 14:47 Last Updated: October 25, 2024 at 14:47 |
PW337849View Pathway |
Xylose Degradation IAcinetobacter johnsonii SH046
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.
|
Creator: Julia Wakoli Created On: October 25, 2024 at 15:27 Last Updated: October 25, 2024 at 15:27 |