Loader

Pathways

PathWhiz ID Pathway Meta Data

PW121783

Pw121783 View Pathway
disease

S-Adenosylhomocysteine (SAH) Hydrolase Deficiency

Mus musculus
S-Adenosylhomocysteine hydrolase deficiency, also known as AdoHcy hydrolase deficiency or adenosylhomocysteinase (AHCY) deficiency, is an autosomal recessive disorder characterized by a defective AHCY gene. AHCY codes for the enzyme S-adenosylhomocysteine hydrolase (AdoHcyase) which efficiently eliminates S-adenosylhomocysteine (SAH) by catalyzing its hydrolysis into adenosine and homocysteine. SAH is both a byproduct of S-adenosylmethionine-dependent methyltransferases and a powerful methyltransferase inhibitor. For these reasons, AdoHcyase is thought to play an essential role in regulating methylations. AdoHcyase deficiency causes a buildup of homocysteine which may be then converted into methionine or cysteine. The accumulation of methionine as a result of AHCY deficiency may lead to signs and symptoms associated with hypermethioninemia, including mental and motor retardation, dysmorphism (unusual facial features), and abnormalities in liver function.

PW000102

Pw000102 View Pathway
disease

S-Adenosylhomocysteine (SAH) Hydrolase Deficiency

Homo sapiens
S-Adenosylhomocysteine hydrolase deficiency, also known as AdoHcy hydrolase deficiency or adenosylhomocysteinase (AHCY) deficiency, is an autosomal recessive disorder characterized by a defective AHCY gene. AHCY codes for the enzyme S-adenosylhomocysteine hydrolase (AdoHcyase) which efficiently eliminates S-adenosylhomocysteine (SAH) by catalyzing its hydrolysis into adenosine and homocysteine. SAH is both a byproduct of S-adenosylmethionine-dependent methyltransferases and a powerful methyltransferase inhibitor. For these reasons, AdoHcyase is thought to play an essential role in regulating methylations. AdoHcyase deficiency causes a buildup of homocysteine which may be then converted into methionine or cysteine. The accumulation of methionine as a result of AHCY deficiency may lead to signs and symptoms associated with hypermethioninemia, including mental and motor retardation, dysmorphism (unusual facial features), and abnormalities in liver function.

PW127245

Pw127245 View Pathway
disease

S-Adenosylhomocysteine (SAH) Hydrolase Deficiency

Homo sapiens
S-Adenosylhomocysteine hydrolase deficiency, also known as AdoHcy hydrolase deficiency or adenosylhomocysteinase (AHCY) deficiency, is an autosomal recessive disorder characterized by a defective AHCY gene. AHCY codes for the enzyme S-adenosylhomocysteine hydrolase (AdoHcyase) which efficiently eliminates S-adenosylhomocysteine (SAH) by catalyzing its hydrolysis into adenosine and homocysteine. SAH is both a byproduct of S-adenosylmethionine-dependent methyltransferases and a powerful methyltransferase inhibitor. For these reasons, AdoHcyase is thought to play an essential role in regulating methylations. AdoHcyase deficiency causes a buildup of homocysteine which may be then converted into methionine or cysteine. The accumulation of methionine as a result of AHCY deficiency may lead to signs and symptoms associated with hypermethioninemia, including mental and motor retardation, dysmorphism (unusual facial features), and abnormalities in liver function.

PW122237

Pw122237 View Pathway
signaling

SA-dependent resistance

Arabidopsis thaliana

PW146311

Pw146311 View Pathway
drug action

Saccharide isomerate Drug Metabolism Action Pathway

Homo sapiens

PW000112

Pw000112 View Pathway
disease

Saccharopinuria/Hyperlysinemia II

Homo sapiens
Saccharopinuria (also known as: saccharopinemia, saccharopine dehydrogenase deficiency, and alpha-aminoadipic semialdehyde synthase deficiency) is caused by a partial deficiency of aminoadipic semialdehyde synthase (AASS) enzyme and causes an increase in saccharopine in the urine. Saccharopinuria is another form of hyperlysinemia. AASS has lysine ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH) activity. AASS acts in the first 2 steps in lysine degradation. A defect in this enzyme results in accumulation of citrulline, lysine and saccharopin in the plasma; lysine in the spinal fluid; and citrulline, lysine and saccharopine in the urine. Symptoms include growth and mental retardation.

PW127265

Pw127265 View Pathway
disease

Saccharopinuria/Hyperlysinemia II

Homo sapiens
Saccharopinuria (also known as: saccharopinemia, saccharopine dehydrogenase deficiency, and alpha-aminoadipic semialdehyde synthase deficiency) is caused by a partial deficiency of aminoadipic semialdehyde synthase (AASS) enzyme and causes an increase in saccharopine in the urine. Saccharopinuria is another form of hyperlysinemia. AASS has lysine ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH) activity. AASS acts in the first 2 steps in lysine degradation. A defect in this enzyme results in accumulation of citrulline, lysine and saccharopin in the plasma; lysine in the spinal fluid; and citrulline, lysine and saccharopine in the urine. Symptoms include growth and mental retardation.

PW122007

Pw122007 View Pathway
disease

Saccharopinuria/Hyperlysinemia II

Rattus norvegicus
Saccharopinuria (also known as: saccharopinemia, saccharopine dehydrogenase deficiency, and alpha-aminoadipic semialdehyde synthase deficiency) is caused by a partial deficiency of aminoadipic semialdehyde synthase (AASS) enzyme and causes an increase in saccharopine in the urine. Saccharopinuria is another form of hyperlysinemia. AASS has lysine ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH) activity. AASS acts in the first 2 steps in lysine degradation. A defect in this enzyme results in accumulation of citrulline, lysine and saccharopin in the plasma; lysine in the spinal fluid; and citrulline, lysine and saccharopine in the urine. Symptoms include growth and mental retardation.

PW121782

Pw121782 View Pathway
disease

Saccharopinuria/Hyperlysinemia II

Mus musculus
Saccharopinuria (also known as: saccharopinemia, saccharopine dehydrogenase deficiency, and alpha-aminoadipic semialdehyde synthase deficiency) is caused by a partial deficiency of aminoadipic semialdehyde synthase (AASS) enzyme and causes an increase in saccharopine in the urine. Saccharopinuria is another form of hyperlysinemia. AASS has lysine ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH) activity. AASS acts in the first 2 steps in lysine degradation. A defect in this enzyme results in accumulation of citrulline, lysine and saccharopin in the plasma; lysine in the spinal fluid; and citrulline, lysine and saccharopine in the urine. Symptoms include growth and mental retardation.

PW146073

Pw146073 View Pathway
drug action

Sacubitril Drug Metabolism Action Pathway

Homo sapiens