Loader

Pathways

PathWhiz ID Pathway Meta Data

PW144838

Pw144838 View Pathway
drug action

Trimipramine Drug Metabolism Action Pathway

Homo sapiens

PW147100

Pw147100 View Pathway
drug action

Trimipramine H1 Antihistamine Neurological Sleep Action Pathway

Homo sapiens
Trimipramine is an ethanolamine class H1 antihistamine used to treat insomnia and allergy symptoms such as hay fever and hives. It is also used with pyridoxine in the treatment of nausea and vomiting in pregnancy. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Wakefulness is regulated by histamine in the tuberomammillary nucleus, a part of the hypothalamus. Histidine is decarboxylated into histamine in the neuron. Histamine is transported into synaptic vesicles by a monoamine transporter then released into the synapse. Normally histamine would activate the H1 histamine receptor on the post-synaptic neuron in the tuberomammillary nucleus. Trimipramine inhibits the H1 histamine receptor, preventing the depolarization of the post-synaptic neuron. This prevents the wakefulness signal from being sent to the major areas of the brain, causing sleepiness.

PW127360

Pw127360 View Pathway
disease

Triosephosphate Isomerase Deficiency

Homo sapiens
Triosephosphate isomerase deficiency is a genetic disorder caused by a mutation in the TPI1 gene. The mutation of this gene causes the production of enzymes that are unstable or enzymes that have reduced activity. This means that cells have reduced energy supplies as glycolysis is compromised. This disorder causes anemia, movement problems and muscle weakness. As a result of the lack of red blood cells to carry oxygen through the body, patients may experience fatigue and shortness of breath. Movement problems appear in early infancy, typically before the age of 2 in patients with this disorder. Treatment includes blood transfusions.

PW122107

Pw122107 View Pathway
disease

Triosephosphate Isomerase Deficiency

Rattus norvegicus
Triosephosphate isomerase deficiency is a genetic disorder caused by a mutation in the TPI1 gene. The mutation of this gene causes the production of enzymes that are unstable or enzymes that have reduced activity. This means that cells have reduced energy supplies as glycolysis is compromised. This disorder causes anemia, movement problems and muscle weakness. As a result of the lack of red blood cells to carry oxygen through the body, patients may experience fatigue and shortness of breath. Movement problems appear in early infancy, typically before the age of 2 in patients with this disorder. Treatment includes blood transfusions.

PW121883

Pw121883 View Pathway
disease

Triosephosphate Isomerase Deficiency

Mus musculus
Triosephosphate isomerase deficiency is a genetic disorder caused by a mutation in the TPI1 gene. The mutation of this gene causes the production of enzymes that are unstable or enzymes that have reduced activity. This means that cells have reduced energy supplies as glycolysis is compromised. This disorder causes anemia, movement problems and muscle weakness. As a result of the lack of red blood cells to carry oxygen through the body, patients may experience fatigue and shortness of breath. Movement problems appear in early infancy, typically before the age of 2 in patients with this disorder. Treatment includes blood transfusions.

PW000539

Pw000539 View Pathway
disease

Triosephosphate Isomerase Deficiency

Homo sapiens
Triosephosphate isomerase deficiency is a genetic disorder caused by a mutation in the TPI1 gene. The mutation of this gene causes the production of enzymes that are unstable or enzymes that have reduced activity. This means that cells have reduced energy supplies as glycolysis is compromised. This disorder causes anemia, movement problems and muscle weakness. As a result of the lack of red blood cells to carry oxygen through the body, patients may experience fatigue and shortness of breath. Movement problems appear in early infancy, typically before the age of 2 in patients with this disorder. Treatment includes blood transfusions.

PW132405

Pw132405 View Pathway
metabolic

Trioxsalen Drug Metabolism

Homo sapiens
Trioxsalen is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Trioxsalen passes through the liver and is then excreted from the body mainly through the kidney.

PW145562

Pw145562 View Pathway
drug action

Trioxsalen Drug Metabolism Action Pathway

Homo sapiens

PW144899

Pw144899 View Pathway
drug action

Tripelennamine Drug Metabolism Action Pathway

Homo sapiens

PW176583

Pw176583 View Pathway
drug action

Tripelennamine H1 Antihistamine Smooth Muscle Relaxation Action Pathway

Homo sapiens
Tripelennamine is a first-generation ethanolamine H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Tripelennamine also inhibits the H1 histamine receptor on bronchiole smooth muscle myocytes. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin.Calcium bound calmodulin is required for the activation of myosin light chain kinase. This prevents the phosphorylation of myosin light chain 3, causing an accumulation of myosin light chain 3. This causes muscle relaxation, opening up the bronchioles in the lungs, making breathing easier.