Loader

Pathways

PathWhiz ID Pathway Meta Data

PW358594

Pw358594 View Pathway
metabolic

Ribose Degradation

Escherichia coli ED1a
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW340731

Pw340731 View Pathway
metabolic

Ribose Degradation

Tannerella forsythia
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW340820

Pw340820 View Pathway
metabolic

Ribose Degradation

Burkholderia cepacia GG4
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW341102

Pw341102 View Pathway
metabolic

Ribose Degradation

Roseburia inulinivorans DSM 16841
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW341126

Pw341126 View Pathway
metabolic

Ribose Degradation

Mitsuokella multacida DSM 20544
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW341121

Pw341121 View Pathway
metabolic

Ribose Degradation

Megamonas funiformis YIT 11815
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW358587

Pw358587 View Pathway
metabolic

Ribose Degradation

Escherichia coli O127:H6 str. E2348/69
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW341006

Pw341006 View Pathway
metabolic

Ribose Degradation

Providencia stuartii ATCC 25827
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW340971

Pw340971 View Pathway
metabolic

Ribose Degradation

Trabulsiella guamensis ATCC 49490
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW341056

Pw341056 View Pathway
metabolic

Ribose Degradation

Grimontia hollisae CIP 101886
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.