Loader

Pathways

PathWhiz ID Pathway Meta Data

PW168837

Pw168837 View Pathway
metabolic

Phosphatidylethanolamine Biosynthesis PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z))

Rattus norvegicus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.

PW152545

Pw152545 View Pathway
metabolic

Phosphatidylethanolamine Biosynthesis PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z))

Bos taurus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.

PW016697

Pw016697 View Pathway
metabolic

Phosphatidylethanolamine Biosynthesis PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z))

Homo sapiens
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.

PW133375

Pw133375 View Pathway
metabolic

Phosphatidylethanolamine Biosynthesis PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z))

Mus musculus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.

PW168838

Pw168838 View Pathway
metabolic

Phosphatidylethanolamine Biosynthesis PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z))

Rattus norvegicus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.

PW152546

Pw152546 View Pathway
metabolic

Phosphatidylethanolamine Biosynthesis PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z))

Bos taurus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.

PW016698

Pw016698 View Pathway
metabolic

Phosphatidylethanolamine Biosynthesis PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z))

Homo sapiens
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.

PW133376

Pw133376 View Pathway
metabolic

Phosphatidylethanolamine Biosynthesis PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z))

Mus musculus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.

PW016699

Pw016699 View Pathway
metabolic

Phosphatidylethanolamine Biosynthesis PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z))

Homo sapiens
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.

PW133377

Pw133377 View Pathway
metabolic

Phosphatidylethanolamine Biosynthesis PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z))

Mus musculus
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Homo sapiens, there exist two phosphatidylethanolamine biosynthesis pathways. In the visualization, all enzymes that are dark green in colour are membrane-localized. The first pathway synthesizes phosphatidylethanolamine from ethanolamine via the Kennedy pathway. First, the cytosol-localized enzyme choline/ethanolamine kinase catalyzes the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. Phosphatidylethanolamine is also synthesized from phosphatidylserine at the mitochondrial inner membrane by phosphatidylserine decarboxylase. Phosphatidylserine, itself, is synthesized using a base-exchange reaction with phosphatidylcholine. This reaction is catalyzed by phosphatidylserine synthase which is located in the endoplasmic reticulum membrane.