PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW064712View Pathway |
physiological
Lipid metabolismArabidopsis thaliana
|
Creator: Guest: Anonymous Created On: April 05, 2018 at 13:48 Last Updated: April 05, 2018 at 13:48 |
PW122388View Pathway |
physiological
Lipid metabolism 1553011094Arabidopsis thaliana
|
Creator: Guest: Anonymous Created On: March 19, 2019 at 09:58 Last Updated: March 19, 2019 at 09:58 |
PW319409View Pathway |
Lipoate Biosynthesis and Incorporation IBacteroides intestinalis
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.
|
Creator: Julia Wakoli Created On: October 07, 2024 at 23:37 Last Updated: October 07, 2024 at 23:37 |
PW319341View Pathway |
Lipoate Biosynthesis and Incorporation IBacteroides xylanisolvens XB1A
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.
|
Creator: Julia Wakoli Created On: October 07, 2024 at 23:01 Last Updated: October 07, 2024 at 23:01 |
PW357125View Pathway |
Lipoate Biosynthesis and Incorporation IEscherichia coli O127:H6 str. E2348/69
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.
|
Creator: Julia Wakoli Created On: November 12, 2024 at 12:25 Last Updated: November 12, 2024 at 12:25 |
PW357118View Pathway |
Lipoate Biosynthesis and Incorporation IEscherichia coli 536
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.
|
Creator: Julia Wakoli Created On: November 12, 2024 at 12:22 Last Updated: November 12, 2024 at 12:22 |
PW320704View Pathway |
Lipoate Biosynthesis and Incorporation IKingella oralis ATCC 51147
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.
|
Creator: Julia Wakoli Created On: October 08, 2024 at 16:21 Last Updated: October 08, 2024 at 16:21 |
PW357120View Pathway |
Lipoate Biosynthesis and Incorporation IEscherichia coli APEC O1
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.
|
Creator: Julia Wakoli Created On: November 12, 2024 at 12:24 Last Updated: November 12, 2024 at 12:24 |
PW357132View Pathway |
Lipoate Biosynthesis and Incorporation IEscherichia coli IAI39
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.
|
Creator: Julia Wakoli Created On: November 12, 2024 at 12:27 Last Updated: November 12, 2024 at 12:27 |
PW320778View Pathway |
Lipoate Biosynthesis and Incorporation ICitrobacter youngae ATCC 29220
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.
|
Creator: Julia Wakoli Created On: October 08, 2024 at 17:02 Last Updated: October 08, 2024 at 17:02 |