Loader

Pathways

PathWhiz ID Pathway Meta Data

PW320824

Pw320824 View Pathway
metabolic

Lipoate Biosynthesis and Incorporation I

Providencia rettgeri DSM 1131
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.

PW320829

Pw320829 View Pathway
metabolic

Lipoate Biosynthesis and Incorporation I

Providencia stuartii ATCC 25827
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.

PW320583

Pw320583 View Pathway
metabolic

Lipoate Biosynthesis and Incorporation I

Prevotella pallens ATCC 700821
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.

PW319719

Pw319719 View Pathway
metabolic

Lipoate Biosynthesis and Incorporation I

Bacteroides fluxus YIT 12057
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.

PW319707

Pw319707 View Pathway
metabolic

Lipoate Biosynthesis and Incorporation I

Bacteroides cellulosilyticus DSM 14838
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.

PW002107

Pw002107 View Pathway
metabolic

Lipoate Biosynthesis and Incorporation I

Escherichia coli
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.

PW123571

Pw123571 View Pathway
metabolic

Lipoate Biosynthesis and Incorporation I

Pseudomonas aeruginosa
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.

PW319319

Pw319319 View Pathway
metabolic

Lipoate Biosynthesis and Incorporation I

Alistipes shahii WAL 8301
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.

PW357124

Pw357124 View Pathway
metabolic

Lipoate Biosynthesis and Incorporation I

Escherichia coli O157:H7 str. EC4115
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.

PW320695

Pw320695 View Pathway
metabolic

Lipoate Biosynthesis and Incorporation I

Parasutterella excrementihominis YIT 11859
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Mechanism of lipoate biosynthesis is similar to biotin biosynthesis. Octanoyltransferase facilitates the tranfer of octanoate moiety from octanoate-ACP to particular lysyl residues in lipoate-dependent enzymes. This process regenerates the acyl-carrier in the process, and create an octanylated domains in lipoate-dependent enzymes. Lipoyl synthase combines with S-adenosyl-L-methionine to generate an active lipoylated domain by converting the octanoyl side chain to an active lipoyl. Lipoyl synthase also split S-Adenosyl methionine (AdoMet) into 5'-deoxyadenosyl radical (later becomes 5'-deoxyadenosine by abstracting a hydrogen from a C-H bond) and L-methionine. L-methionine will undergo S-Adenosyl-L-Methionine Biosynthesis.