Loader

Pathways

PathWhiz ID Pathway Meta Data

PW132356

Pw132356 View Pathway
metabolic

Isoflurophate Drug Metabolism

Homo sapiens
Isoflurophate is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Isoflurophate passes through the liver and is then excreted from the body mainly through the kidney.

PW144789

Pw144789 View Pathway
drug action

Isoflurophate Drug Metabolism Action Pathway

Homo sapiens

PW122601

Pw122601 View Pathway
metabolic

Isoleucine Biosynthesis

Pseudomonas aeruginosa
Isoleucine biosynthesis begins with L-threonine from the threonine biosynthesis pathway. L-threonine interacts with threonine dehydratase biosynthetic releasing water, a hydrogen ion and (2Z)-2-aminobut-2-enoate. The latter is isomerized into a 2-iminobutanoate which interacts with water and a hydrogen ion spontaneously, resulting in the release of ammonium and 2-ketobutyric acid. 2-ketobutyric acid reacts with pyruvic acid and hydrogen ions through an acetohydroxybutanoate synthase / acetolactate synthase 2 resulting in carbon dioxide and (S)-2-Aceto-2-hydroxybutanoic acid. (S)-2-Aceto-2-hydroxybutanoic acid is reduced by an NADPH driven acetohydroxy acid isomeroreductase releasing NADP and acetohydroxy acid isomeroreductase. The latter compound is dehydrated by a dihydroxy acid dehydratase resulting in 3-methyl-2-oxovaleric acid. This compound reacts in a reversible reaction with L-glutamic acid through a Branched-chain-amino-acid aminotransferase resulting in oxoglutaric acid and L-isoleucine. L-isoleucine can also be transported into the cytoplasm through two different methods: a branched chain amino acid ABC transporter or a branched chain amino acid transporter BrnQy.

PW000818

Pw000818 View Pathway
metabolic

Isoleucine Biosynthesis

Escherichia coli
Isoleucine biosynthesis begins with L-threonine from the threonine biosynthesis pathway. L-threonine interacts with threonine dehydratase biosynthetic releasing water, a hydrogen ion and (2Z)-2-aminobut-2-enoate. The latter is isomerized into a 2-iminobutanoate which interacts with water and a hydrogen ion spontaneously, resulting in the release of ammonium and 2-ketobutyric acid. 2-ketobutyric acid reacts with pyruvic acid and hydrogen ions through an acetohydroxybutanoate synthase / acetolactate synthase 2 resulting in carbon dioxide and (S)-2-Aceto-2-hydroxybutanoic acid. (S)-2-Aceto-2-hydroxybutanoic acid is reduced by an NADPH driven acetohydroxy acid isomeroreductase releasing NADP and acetohydroxy acid isomeroreductase. The latter compound is dehydrated by a dihydroxy acid dehydratase resulting in 3-methyl-2-oxovaleric acid. This compound reacts in a reversible reaction with L-glutamic acid through a Branched-chain-amino-acid aminotransferase resulting in oxoglutaric acid and L-isoleucine. L-isoleucine can also be transported into the cytoplasm through two different methods: a branched chain amino acid ABC transporter or a branched chain amino acid transporter BrnQy.

PW002537

Pw002537 View Pathway
metabolic

Isoleucine Biosynthesis

Arabidopsis thaliana
Isoleucine biosynthesis begins with L-threonine from the threonine biosynthesis pathway. L-threonine interacts with a threonine dehydratase biosynthetic releasing water, a hydrogen ion and (2Z)-2-aminobut-2-enoate. This compound is isomerized into a 2-iminobutanoate which interacts with water and a hydrogen ion spontaneously, resulting in the release of ammonium and 2-ketobutyric acid. This compound reacts with pyruvic acid and hydrogen ion through an acetohydroxybutanoate synthase / acetolactate synthase 2 resulting in carbon dioxide and (S)-2-Aceto-2-hydroxybutanoic acid. The latter compound is reduced by an NADPH driven acetohydroxy acid isomeroreductase releasing NADP and acetohydroxy acid isomeroreductase. The latter compound is dehydrated by a dihydroxy acid dehydratase resulting in 3-methyl-2-oxovaleric acid.This compound reacts in a reversible reaction with L-glutamic acid through a Branched-chain-amino-acid aminotransferase resulting in oxoglutaric acid and L-isoleucine.

PW002476

Pw002476 View Pathway
metabolic

Isoleucine Biosynthesis

Saccharomyces cerevisiae
Isoleucine biosynthesis begins with L-threonine from the threonine biosynthesis pathway. L-threonine interacts with a threonine dehydratase biosynthetic releasing water, a hydrogen ion and (2Z)-2-aminobut-2-enoate. This compound is isomerized into a 2-iminobutanoate which interacts with water and a hydrogen ion spontaneously, resulting in the release of ammonium and 2-ketobutyric acid. This compound reacts with pyruvic acid and hydrogen ion through an acetohydroxybutanoate synthase / acetolactate synthase 2 resulting in carbon dioxide and (S)-2-Aceto-2-hydroxybutanoic acid. The latter compound is reduced by an NADPH driven acetohydroxy acid isomeroreductase releasing NADP and acetohydroxy acid isomeroreductase. The latter compound is dehydrated by a dihydroxy acid dehydratase resulting in 3-methyl-2-oxovaleric acid.This compound reacts in a reversible reaction with L-glutamic acid through a Branched-chain-amino-acid aminotransferase resulting in oxoglutaric acid and L-isoleucine.

PW273333

Pw273333 View Pathway
metabolic

Isoleucine Degradation

Streptomyces avermitilis
Isoleucine degradation is a vital metabolic process that breaks down the essential amino acid isoleucine into intermediates that feed into the tricarboxylic acid (TCA) cycle, facilitating energy production and various biosynthetic pathways. This pathway involves multiple enzymatic steps that convert isoleucine into acetyl-CoA and propionyl-CoA, key molecules for cellular metabolism. These reactions help in generating energy and providing building blocks for the synthesis of other important compounds.

PW002538

Pw002538 View Pathway
metabolic

Isoleucine Degradation

Arabidopsis thaliana
The degradation of isoleucine starts either in the mitochondria or the cytosol. L-isoleucine reacts with 2-oxoglutarate through a branch-chain amino acid aminotransferase resulting in the release of L-glutamate and 3-methyl-2-oxopentanoate. The latter compound reacts with 2-oxoisovalerate carboxy-lyase resulting in the release of carbon dioxide and methylbutanoyl. Methylbutanol reacts with oxidized flavoproteins resulting in the release of a reduced flavoprotein and tiglyl-CoA. The latter then reacts with water resulting in the release of 2-methyl-3-hydroxybutyryl-CoA. The latter compound reacts with NAD resulting in the release of NADH, hydrogen ion and 2-methylacetoacetyl-CoA. The latter then reacts with a Coenzyme A resulting in the release of propanoyl-CoA and acetyl-CoA. This degradation pathways may be an important detoxification mechanism to prevent the build up of branched chain aminoacids and their derived alpha-keto acids which are cytotoxic.

PW002491

Pw002491 View Pathway
metabolic

Isoleucine Degradation

Saccharomyces cerevisiae
The degradation of isoleucine starts either in the mitochondria or the cytosol. L-isoleucine reacts with 2-oxoglutarate through a branch-chain amino acid aminotransferase resulting in the release of L-glutamate and 3-methyl-2-oxopentanoate. The latter compound reacts with 2-oxoisovalerate carboxy-lyase resulting in the release of carbon dioxide and methylbutanal. Methylbutanal can then be turned into methylbutanol through a alcohol dehydrogenase

PW145747

Pw145747 View Pathway
drug action

Isometheptene Drug Metabolism Action Pathway

Homo sapiens