PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW339678View Pathway |
L-Arabinose Degradation ITrabulsiella guamensis ATCC 49490
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.
|
Creator: Julia Wakoli Created On: October 29, 2024 at 21:52 Last Updated: October 29, 2024 at 21:52 |
PW339736View Pathway |
L-Arabinose Degradation ISubdoligranulum variabile DSM 15176
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.
|
Creator: Julia Wakoli Created On: October 29, 2024 at 23:25 Last Updated: October 29, 2024 at 23:25 |
PW355198View Pathway |
L-Arabinose Degradation IEscherichia coli O157:H7 str. EC4115
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.
|
Creator: Julia Wakoli Created On: November 11, 2024 at 10:37 Last Updated: November 11, 2024 at 10:37 |
PW339173View Pathway |
L-Arabinose Degradation IMegasphaera elsdenii DSM 20460
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.
|
Creator: Julia Wakoli Created On: October 28, 2024 at 14:13 Last Updated: October 28, 2024 at 14:13 |
PW355206View Pathway |
L-Arabinose Degradation IEscherichia coli O157:H7 str. TW14359
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.
|
Creator: Julia Wakoli Created On: November 11, 2024 at 10:40 Last Updated: November 11, 2024 at 10:40 |
PW339666View Pathway |
L-Arabinose Degradation ICitrobacter youngae ATCC 29220
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.
|
Creator: Julia Wakoli Created On: October 29, 2024 at 21:32 Last Updated: October 29, 2024 at 21:32 |
PW002103View Pathway |
L-Arabinose Degradation IEscherichia coli
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.
|
Creator: Ana Marcu Created On: October 14, 2015 at 10:51 Last Updated: October 14, 2015 at 10:51 |
PW355205View Pathway |
L-Arabinose Degradation IEscherichia coli IAI39
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.
|
Creator: Julia Wakoli Created On: November 11, 2024 at 10:40 Last Updated: November 11, 2024 at 10:40 |
PW339514View Pathway |
L-Arabinose Degradation IBacteroides eggerthii 1_2_48FAA
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.
|
Creator: Julia Wakoli Created On: October 29, 2024 at 16:40 Last Updated: October 29, 2024 at 16:40 |
PW339583View Pathway |
L-Arabinose Degradation IParabacteroides johnsonii DSM 18315
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.
|
Creator: Julia Wakoli Created On: October 29, 2024 at 18:50 Last Updated: October 29, 2024 at 18:50 |