Loader

Pathways

PathWhiz ID Pathway Meta Data

PW339678

Pw339678 View Pathway
metabolic

L-Arabinose Degradation I

Trabulsiella guamensis ATCC 49490
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.

PW339736

Pw339736 View Pathway
metabolic

L-Arabinose Degradation I

Subdoligranulum variabile DSM 15176
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.

PW355198

Pw355198 View Pathway
metabolic

L-Arabinose Degradation I

Escherichia coli O157:H7 str. EC4115
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.

PW339173

Pw339173 View Pathway
metabolic

L-Arabinose Degradation I

Megasphaera elsdenii DSM 20460
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.

PW355206

Pw355206 View Pathway
metabolic

L-Arabinose Degradation I

Escherichia coli O157:H7 str. TW14359
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.

PW339666

Pw339666 View Pathway
metabolic

L-Arabinose Degradation I

Citrobacter youngae ATCC 29220
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.

PW002103

Pw002103 View Pathway
metabolic

L-Arabinose Degradation I

Escherichia coli
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.

PW355205

Pw355205 View Pathway
metabolic

L-Arabinose Degradation I

Escherichia coli IAI39
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.

PW339514

Pw339514 View Pathway
metabolic

L-Arabinose Degradation I

Bacteroides eggerthii 1_2_48FAA
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.

PW339583

Pw339583 View Pathway
metabolic

L-Arabinose Degradation I

Parabacteroides johnsonii DSM 18315
L-arabinose enters E. coli unphosphorylated via a low-affinity proton-driven transporter (AraE) or a high-affinity ATP-driven system (AraFGH). Following entry, it is converted to L-ribulose-5-phosphate by an isomerase and kinase. L-ribulose-5-phosphate is then converted by an epimerase to the pentose phosphate pathway intermediate, D-xylulose-5-phosphate. D-xylulose-5-phosphate then enters metabolism pathways to become precursor metabolites, reducing power and metabolic energy.