Loader

Pathways

PathWhiz ID Pathway Meta Data

PW088435

Pw088435 View Pathway
metabolic

Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids

Drosophila melanogaster
Beta-oxidation is the major degradative pathway for fatty acid esters in humans. Fatty acids and their CoA esters are found throughout the body, playing roles such as components of cellular lipids, regulators of enzymes and membrane channels, ligands for nuclear receptors, precursor molecules for hormones, and signalling molecules. Beta-oxidation occurs in the peroxisomes and mitochondria, the latter of which is depicted here. Whether beta-oxidation starts in the mitochondria or the peroxisome depends on the length of the fatty acid. Medium to long chain fatty acids go directly to the mitochondria, whereas very long chain fatty acids (>22 carbons) may be first metabolized down to octanyl-CoA in the peroxisomes and then transported to the mitochondria for the remainder of the oxidation. Beta-oxidation begins with fatty acids first being activated by an acyl-coenzyme A synthetase. This process uses ATP to produce a reactive fatty acyl adenylate which then reacts with coenzyme A to produce a fatty acyl-CoA. Short and medium chain fatty acids can enter the mitochondria directly via diffusion where they are activated in the mitochondrial matrix by acyl-coenzyme A synthetases. Long chain fatty acids must be activated in the outer mitochondrial membrane then transported as a carnatine complex into the mitochondria. A double bond is formed between C-2 and C-3 to produce trans-Δ2-enoyl-CoA which is catalyzed by acyl-CoA-dehydrogenases in the mitochondria. Enoyl CoA hydratase then hydrates the double bond between C-2 and C-3 to produce a L-beta-hydroxyacyl CoA which then has its hydroxyl group converted to a keto group to produce beta-ketoacyl CoA. Finally, the beta-ketoacyl CoA is cleaved by beta-ketothiolase and a thiol group is inserted between C-2 and C-3 to reduce the acyl-CoA and produce acetyl-CoA. Acetyl-CoA can then enter the citric acid cycle.

PW088377

Pw088377 View Pathway
metabolic

Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids

Rattus norvegicus
Beta-oxidation is the major degradative pathway for fatty acid esters in humans. Fatty acids and their CoA esters are found throughout the body, playing roles such as components of cellular lipids, regulators of enzymes and membrane channels, ligands for nuclear receptors, precursor molecules for hormones, and signalling molecules. Beta-oxidation occurs in the peroxisomes and mitochondria, the latter of which is depicted here. Whether beta-oxidation starts in the mitochondria or the peroxisome depends on the length of the fatty acid. Medium to long chain fatty acids go directly to the mitochondria, whereas very long chain fatty acids (>22 carbons) may be first metabolized down to octanyl-CoA in the peroxisomes and then transported to the mitochondria for the remainder of the oxidation. Beta-oxidation begins with fatty acids first being activated by an acyl-coenzyme A synthetase. This process uses ATP to produce a reactive fatty acyl adenylate which then reacts with coenzyme A to produce a fatty acyl-CoA. Short and medium chain fatty acids can enter the mitochondria directly via diffusion where they are activated in the mitochondrial matrix by acyl-coenzyme A synthetases. Long chain fatty acids must be activated in the outer mitochondrial membrane then transported as a carnatine complex into the mitochondria. A double bond is formed between C-2 and C-3 to produce trans-Δ2-enoyl-CoA which is catalyzed by acyl-CoA-dehydrogenases in the mitochondria. Enoyl CoA hydratase then hydrates the double bond between C-2 and C-3 to produce a L-beta-hydroxyacyl CoA which then has its hydroxyl group converted to a keto group to produce beta-ketoacyl CoA. Finally, the beta-ketoacyl CoA is cleaved by beta-ketothiolase and a thiol group is inserted between C-2 and C-3 to reduce the acyl-CoA and produce acetyl-CoA. Acetyl-CoA can then enter the citric acid cycle.

PW088284

Pw088284 View Pathway
metabolic

Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids

Bos taurus
Beta-oxidation is the major degradative pathway for fatty acid esters in humans. Fatty acids and their CoA esters are found throughout the body, playing roles such as components of cellular lipids, regulators of enzymes and membrane channels, ligands for nuclear receptors, precursor molecules for hormones, and signalling molecules. Beta-oxidation occurs in the peroxisomes and mitochondria, the latter of which is depicted here. Whether beta-oxidation starts in the mitochondria or the peroxisome depends on the length of the fatty acid. Medium to long chain fatty acids go directly to the mitochondria, whereas very long chain fatty acids (>22 carbons) may be first metabolized down to octanyl-CoA in the peroxisomes and then transported to the mitochondria for the remainder of the oxidation. Beta-oxidation begins with fatty acids first being activated by an acyl-coenzyme A synthetase. This process uses ATP to produce a reactive fatty acyl adenylate which then reacts with coenzyme A to produce a fatty acyl-CoA. Short and medium chain fatty acids can enter the mitochondria directly via diffusion where they are activated in the mitochondrial matrix by acyl-coenzyme A synthetases. Long chain fatty acids must be activated in the outer mitochondrial membrane then transported as a carnatine complex into the mitochondria. A double bond is formed between C-2 and C-3 to produce trans-Δ2-enoyl-CoA which is catalyzed by acyl-CoA-dehydrogenases in the mitochondria. Enoyl CoA hydratase then hydrates the double bond between C-2 and C-3 to produce a L-beta-hydroxyacyl CoA which then has its hydroxyl group converted to a keto group to produce beta-ketoacyl CoA. Finally, the beta-ketoacyl CoA is cleaved by beta-ketothiolase and a thiol group is inserted between C-2 and C-3 to reduce the acyl-CoA and produce acetyl-CoA. Acetyl-CoA can then enter the citric acid cycle.

PW064619

Pw064619 View Pathway
metabolic

Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids

Mus musculus
Beta-oxidation is the major degradative pathway for fatty acid esters in humans. Fatty acids and their CoA esters are found throughout the body, playing roles such as components of cellular lipids, regulators of enzymes and membrane channels, ligands for nuclear receptors, precursor molecules for hormones, and signalling molecules. Beta-oxidation occurs in the peroxisomes and mitochondria, the latter of which is depicted here. Whether beta-oxidation starts in the mitochondria or the peroxisome depends on the length of the fatty acid. Medium to long chain fatty acids go directly to the mitochondria, whereas very long chain fatty acids (>22 carbons) may be first metabolized down to octanyl-CoA in the peroxisomes and then transported to the mitochondria for the remainder of the oxidation. Beta-oxidation begins with fatty acids first being activated by an acyl-coenzyme A synthetase. This process uses ATP to produce a reactive fatty acyl adenylate which then reacts with coenzyme A to produce a fatty acyl-CoA. Short and medium chain fatty acids can enter the mitochondria directly via diffusion where they are activated in the mitochondrial matrix by acyl-coenzyme A synthetases. Long chain fatty acids must be activated in the outer mitochondrial membrane then transported as a carnatine complex into the mitochondria. A double bond is formed between C-2 and C-3 to produce trans-Δ2-enoyl-CoA which is catalyzed by acyl-CoA-dehydrogenases in the mitochondria. Enoyl CoA hydratase then hydrates the double bond between C-2 and C-3 to produce a L-beta-hydroxyacyl CoA which then has its hydroxyl group converted to a keto group to produce beta-ketoacyl CoA. Finally, the beta-ketoacyl CoA is cleaved by beta-ketothiolase and a thiol group is inserted between C-2 and C-3 to reduce the acyl-CoA and produce acetyl-CoA. Acetyl-CoA can then enter the citric acid cycle.

PW000171

Pw000171 View Pathway
metabolic

Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids

Homo sapiens
Beta-oxidation is the major degradative pathway for fatty acid esters in humans. Fatty acids and their CoA esters are found throughout the body, playing roles such as components of cellular lipids, regulators of enzymes and membrane channels, ligands for nuclear receptors, precursor molecules for hormones, and signalling molecules. Beta-oxidation occurs in the peroxisomes and mitochondria, the latter of which is depicted here. Whether beta-oxidation starts in the mitochondria or the peroxisome depends on the length of the fatty acid. Medium to long chain fatty acids go directly to the mitochondria, whereas very long chain fatty acids (>22 carbons) may be first metabolized down to octanyl-CoA in the peroxisomes and then transported to the mitochondria for the remainder of the oxidation. Beta-oxidation begins with fatty acids first being activated by an acyl-coenzyme A synthetase. This process uses ATP to produce a reactive fatty acyl adenylate which then reacts with coenzyme A to produce a fatty acyl-CoA. Short and medium chain fatty acids can enter the mitochondria directly via diffusion where they are activated in the mitochondrial matrix by acyl-coenzyme A synthetases. Long chain fatty acids must be activated in the outer mitochondrial membrane then transported as a carnatine complex into the mitochondria. A double bond is formed between C-2 and C-3 to produce trans-Δ2-enoyl-CoA which is catalyzed by acyl-CoA-dehydrogenases in the mitochondria. Enoyl CoA hydratase then hydrates the double bond between C-2 and C-3 to produce a L-beta-hydroxyacyl CoA which then has its hydroxyl group converted to a keto group to produce beta-ketoacyl CoA. Finally, the beta-ketoacyl CoA is cleaved by beta-ketothiolase and a thiol group is inserted between C-2 and C-3 to reduce the acyl-CoA and produce acetyl-CoA. Acetyl-CoA can then enter the citric acid cycle.

PW088538

Pw088538 View Pathway
metabolic

Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids

Caenorhabditis elegans
Beta-oxidation is the major degradative pathway for fatty acid esters in humans. Fatty acids and their CoA esters are found throughout the body, playing roles such as components of cellular lipids, regulators of enzymes and membrane channels, ligands for nuclear receptors, precursor molecules for hormones, and signalling molecules. Beta-oxidation occurs in the peroxisomes and mitochondria, the latter of which is depicted here. Whether beta-oxidation starts in the mitochondria or the peroxisome depends on the length of the fatty acid. Medium to long chain fatty acids go directly to the mitochondria, whereas very long chain fatty acids (>22 carbons) may be first metabolized down to octanyl-CoA in the peroxisomes and then transported to the mitochondria for the remainder of the oxidation. Beta-oxidation begins with fatty acids first being activated by an acyl-coenzyme A synthetase. This process uses ATP to produce a reactive fatty acyl adenylate which then reacts with coenzyme A to produce a fatty acyl-CoA. Short and medium chain fatty acids can enter the mitochondria directly via diffusion where they are activated in the mitochondrial matrix by acyl-coenzyme A synthetases. Long chain fatty acids must be activated in the outer mitochondrial membrane then transported as a carnatine complex into the mitochondria. A double bond is formed between C-2 and C-3 to produce trans-Δ2-enoyl-CoA which is catalyzed by acyl-CoA-dehydrogenases in the mitochondria. Enoyl CoA hydratase then hydrates the double bond between C-2 and C-3 to produce a L-beta-hydroxyacyl CoA which then has its hydroxyl group converted to a keto group to produce beta-ketoacyl CoA. Finally, the beta-ketoacyl CoA is cleaved by beta-ketothiolase and a thiol group is inserted between C-2 and C-3 to reduce the acyl-CoA and produce acetyl-CoA. Acetyl-CoA can then enter the citric acid cycle.

PW000524

Pw000524 View Pathway
disease

Mitochondrial Complex II Deficiency

Homo sapiens
Mitochondrial complex II deficiency, which is also known as CII deficiency, is a rare form of an inherited inborn error of metabolism (IEM). CII deficiency is an autosomal recessive disorder that arises from mutations in the succinate dehydrogenase (SDH) genes (SDHA, SDHB, SDHC and SDHD). These genes code for the mitochondrial enzyme known as succinate dehydrogenase, a multicomponent, membrane-bound enzyme, which is also known as SDH, succinate-coenzyme Q reductase (SQR), or respiratory complex II. SDH is found in the inner mitochondrial membrane and catalyzes the oxidation of succinate to fumarate with the reduction of ubiquinone to ubiquinol. SDH or complex II is assembled via the action of two assembly factors (SDHAF1 and SDHAF2). Mutations in SDHA and SDHAF1 are most commonly found in patients with CII deficiency. Because complex II is found in the mitochondria, CII deficiency is technically considered a mitochondrial disease. CII deficiency accounts for between 2%-23% of all respiratory chain deficiency diagnoses. The signs and symptoms of mitochondrial complex II deficiency can vary greatly from severe life-threatening symptoms in infancy to muscle disease beginning in adulthood. The symptoms are very much dependent on the mutations to the SDH components. SDHA gene mutations cause myoclonic seizures and Leigh’s syndrome, a severe neurological disorder that is characterized by progressive loss of mental and movement abilities (psychomotor regression) and typically results in death within 1-2 years. SDHB gene mutations can cause leukodystrophy which affects the myelin sheath, the material surrounding and protecting nerve cells. Damage to the myelin sheath slows down or blocks messages between the brain and the rest of the body, which leads to problems with movement, speech, vision, hearing, and mental and physical development. SDHAF1 gene mutations can cause severe progressive leukoencephalopathy, which is characterized by the degeneration of the white matter of the brain. Interestingly, complex II deficiency gene mutation carriers may be at an increased risk for certain cancers.

PW122092

Pw122092 View Pathway
disease

Mitochondrial Complex II Deficiency

Rattus norvegicus
Mitochondrial complex II deficiency, which is also known as CII deficiency, is a rare form of an inherited inborn error of metabolism (IEM). CII deficiency is an autosomal recessive disorder that arises from mutations in the succinate dehydrogenase (SDH) genes (SDHA, SDHB, SDHC and SDHD). These genes code for the mitochondrial enzyme known as succinate dehydrogenase, a multicomponent, membrane-bound enzyme, which is also known as SDH, succinate-coenzyme Q reductase (SQR), or respiratory complex II. SDH is found in the inner mitochondrial membrane and catalyzes the oxidation of succinate to fumarate with the reduction of ubiquinone to ubiquinol. SDH or complex II is assembled via the action of two assembly factors (SDHAF1 and SDHAF2). Mutations in SDHA and SDHAF1 are most commonly found in patients with CII deficiency. Because complex II is found in the mitochondria, CII deficiency is technically considered a mitochondrial disease. CII deficiency accounts for between 2%-23% of all respiratory chain deficiency diagnoses. The signs and symptoms of mitochondrial complex II deficiency can vary greatly from severe life-threatening symptoms in infancy to muscle disease beginning in adulthood. The symptoms are very much dependent on the mutations to the SDH components. SDHA gene mutations cause myoclonic seizures and Leigh’s syndrome, a severe neurological disorder that is characterized by progressive loss of mental and movement abilities (psychomotor regression) and typically results in death within 1-2 years. SDHB gene mutations can cause leukodystrophy which affects the myelin sheath, the material surrounding and protecting nerve cells. Damage to the myelin sheath slows down or blocks messages between the brain and the rest of the body, which leads to problems with movement, speech, vision, hearing, and mental and physical development. SDHAF1 gene mutations can cause severe progressive leukoencephalopathy, which is characterized by the degeneration of the white matter of the brain. Interestingly, complex II deficiency gene mutation carriers may be at an increased risk for certain cancers.

PW127321

Pw127321 View Pathway
disease

Mitochondrial Complex II Deficiency

Homo sapiens
Mitochondrial complex II deficiency, which is also known as CII deficiency, is a rare form of an inherited inborn error of metabolism (IEM). CII deficiency is an autosomal recessive disorder that arises from mutations in the succinate dehydrogenase (SDH) genes (SDHA, SDHB, SDHC and SDHD). These genes code for the mitochondrial enzyme known as succinate dehydrogenase, a multicomponent, membrane-bound enzyme, which is also known as SDH, succinate-coenzyme Q reductase (SQR), or respiratory complex II. SDH is found in the inner mitochondrial membrane and catalyzes the oxidation of succinate to fumarate with the reduction of ubiquinone to ubiquinol. SDH or complex II is assembled via the action of two assembly factors (SDHAF1 and SDHAF2). Mutations in SDHA and SDHAF1 are most commonly found in patients with CII deficiency. Because complex II is found in the mitochondria, CII deficiency is technically considered a mitochondrial disease. CII deficiency accounts for between 2%-23% of all respiratory chain deficiency diagnoses. The signs and symptoms of mitochondrial complex II deficiency can vary greatly from severe life-threatening symptoms in infancy to muscle disease beginning in adulthood. The symptoms are very much dependent on the mutations to the SDH components. SDHA gene mutations cause myoclonic seizures and Leigh’s syndrome, a severe neurological disorder that is characterized by progressive loss of mental and movement abilities (psychomotor regression) and typically results in death within 1-2 years. SDHB gene mutations can cause leukodystrophy which affects the myelin sheath, the material surrounding and protecting nerve cells. Damage to the myelin sheath slows down or blocks messages between the brain and the rest of the body, which leads to problems with movement, speech, vision, hearing, and mental and physical development. SDHAF1 gene mutations can cause severe progressive leukoencephalopathy, which is characterized by the degeneration of the white matter of the brain. Interestingly, complex II deficiency gene mutation carriers may be at an increased risk for certain cancers.

PW121868

Pw121868 View Pathway
disease

Mitochondrial Complex II Deficiency

Mus musculus
Mitochondrial complex II deficiency, which is also known as CII deficiency, is a rare form of an inherited inborn error of metabolism (IEM). CII deficiency is an autosomal recessive disorder that arises from mutations in the succinate dehydrogenase (SDH) genes (SDHA, SDHB, SDHC and SDHD). These genes code for the mitochondrial enzyme known as succinate dehydrogenase, a multicomponent, membrane-bound enzyme, which is also known as SDH, succinate-coenzyme Q reductase (SQR), or respiratory complex II. SDH is found in the inner mitochondrial membrane and catalyzes the oxidation of succinate to fumarate with the reduction of ubiquinone to ubiquinol. SDH or complex II is assembled via the action of two assembly factors (SDHAF1 and SDHAF2). Mutations in SDHA and SDHAF1 are most commonly found in patients with CII deficiency. Because complex II is found in the mitochondria, CII deficiency is technically considered a mitochondrial disease. CII deficiency accounts for between 2%-23% of all respiratory chain deficiency diagnoses. The signs and symptoms of mitochondrial complex II deficiency can vary greatly from severe life-threatening symptoms in infancy to muscle disease beginning in adulthood. The symptoms are very much dependent on the mutations to the SDH components. SDHA gene mutations cause myoclonic seizures and Leigh’s syndrome, a severe neurological disorder that is characterized by progressive loss of mental and movement abilities (psychomotor regression) and typically results in death within 1-2 years. SDHB gene mutations can cause leukodystrophy which affects the myelin sheath, the material surrounding and protecting nerve cells. Damage to the myelin sheath slows down or blocks messages between the brain and the rest of the body, which leads to problems with movement, speech, vision, hearing, and mental and physical development. SDHAF1 gene mutations can cause severe progressive leukoencephalopathy, which is characterized by the degeneration of the white matter of the brain. Interestingly, complex II deficiency gene mutation carriers may be at an increased risk for certain cancers.