PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW088545View Pathway |
Nucleotide Excision RepairCaenorhabditis elegans
In order to pass genetic information from one generation to the next, all organisms must accurately replicate their genomes during each cell division. This includes the nuclear genome and mitochondrial and chloroplast genomes. These are normally replicated with high fidelity that is achieved through the action of accurate DNA repair. Nucleotide Excision Repair is one os several mechanisms of DNA repair. Nucleotide excision repair (NER) operates on base damage caused by exogenous agents (such as mutagenic and carcinogenic chemicals and photoproducts generated by sunlight exposure) that cause alterations in the chemistry and structure of the DNA duplex . Such damage is recognized by a protein called XPC, which is stably bound to another protein called HHRAD23B (R23). The binding of the XPC–HHRAD23 heterodimeric subcomplex is followed by the binding of several other proteins (XPA, RPA, TFIIH and XPG). Of these, XPA and RPA are believed to facilitate specific recognition of base damage. TFIIH is a subcomplex of the RNA polymerase II transcription initiation machinery which also operates during NER. It consists of six subunits and contains two DNA helicase activities (XPB and XPD) that unwind the DNA duplex in the immediate vicinity of the base damage. This local denaturation generates a bubble in the DNA, the ends of which comprise junctions between duplex and single-stranded DNA. The subsequent binding of the ERCC1–XPF heterodimeric subcomplex generates a completely assembled NER multiprotein complex. XPG is a duplex/single-stranded DNA endonuclease that cuts the damaged strand at such junctions 3’ to the site of base damage. Conversely, the ERCC1–XPF heterodimeric protein is a duplex/single-stranded DNA endonuclease that cuts the damaged strand at such junctions 5’ to the site of base damage. This bimodal incision generates an oligonucleotide fragment 27–30 nucleotides in length which includes the damaged base. This fragment is excised from the genome, concomitant with restoring the potential 27–30 nucleotide gap by repair synthesis. Repair synthesis requires DNA polymerases or , as well as the accessory replication proteins PCNA, RPA and RFC. The covalent integrity of the damaged strand is then restored by DNA ligase. Collectively, these biochemical events return the damaged DNA to its native chemistry and configuration. ERCC1, excision repair cross-complementing 1; PCNA, proliferating cell nuclear antigen; POL, polymerase; RFC, replication factor C; RPA, replication protein A; TFIIH, transcription factor IIH; XP, xeroderma pigmentosum.
|
Creator: Ana Marcu Created On: August 10, 2018 at 18:27 Last Updated: August 10, 2018 at 18:27 |
PW064622View Pathway |
Nucleotide Excision RepairMus musculus
In order to pass genetic information from one generation to the next, all organisms must accurately replicate their genomes during each cell division. This includes the nuclear genome and mitochondrial and chloroplast genomes. These are normally replicated with high fidelity that is achieved through the action of accurate DNA repair. Nucleotide Excision Repair is one os several mechanisms of DNA repair. Nucleotide excision repair (NER) operates on base damage caused by exogenous agents (such as mutagenic and carcinogenic chemicals and photoproducts generated by sunlight exposure) that cause alterations in the chemistry and structure of the DNA duplex . Such damage is recognized by a protein called XPC, which is stably bound to another protein called HHRAD23B (R23). The binding of the XPC–HHRAD23 heterodimeric subcomplex is followed by the binding of several other proteins (XPA, RPA, TFIIH and XPG). Of these, XPA and RPA are believed to facilitate specific recognition of base damage. TFIIH is a subcomplex of the RNA polymerase II transcription initiation machinery which also operates during NER. It consists of six subunits and contains two DNA helicase activities (XPB and XPD) that unwind the DNA duplex in the immediate vicinity of the base damage. This local denaturation generates a bubble in the DNA, the ends of which comprise junctions between duplex and single-stranded DNA. The subsequent binding of the ERCC1–XPF heterodimeric subcomplex generates a completely assembled NER multiprotein complex. XPG is a duplex/single-stranded DNA endonuclease that cuts the damaged strand at such junctions 3’ to the site of base damage. Conversely, the ERCC1–XPF heterodimeric protein is a duplex/single-stranded DNA endonuclease that cuts the damaged strand at such junctions 5’ to the site of base damage. This bimodal incision generates an oligonucleotide fragment 27–30 nucleotides in length which includes the damaged base. This fragment is excised from the genome, concomitant with restoring the potential 27–30 nucleotide gap by repair synthesis. Repair synthesis requires DNA polymerases or , as well as the accessory replication proteins PCNA, RPA and RFC. The covalent integrity of the damaged strand is then restored by DNA ligase. Collectively, these biochemical events return the damaged DNA to its native chemistry and configuration. ERCC1, excision repair cross-complementing 1; PCNA, proliferating cell nuclear antigen; POL, polymerase; RFC, replication factor C; RPA, replication protein A; TFIIH, transcription factor IIH; XP, xeroderma pigmentosum.
|
Creator: Carin Li Created On: January 21, 2018 at 22:12 Last Updated: January 21, 2018 at 22:12 |
PW000457View Pathway |
Nucleotide Excision RepairHomo sapiens
In order to pass genetic information from one generation to the next, all organisms must accurately replicate their genomes during each cell division. This includes the nuclear genome and mitochondrial and chloroplast genomes. These are normally replicated with high fidelity that is achieved through the action of accurate DNA repair. Nucleotide Excision Repair is one os several mechanisms of DNA repair. Nucleotide excision repair (NER) operates on base damage caused by exogenous agents (such as mutagenic and carcinogenic chemicals and photoproducts generated by sunlight exposure) that cause alterations in the chemistry and structure of the DNA duplex . Such damage is recognized by a protein called XPC, which is stably bound to another protein called HHRAD23B (R23). The binding of the XPC–HHRAD23 heterodimeric subcomplex is followed by the binding of several other proteins (XPA, RPA, TFIIH and XPG). Of these, XPA and RPA are believed to facilitate specific recognition of base damage. TFIIH is a subcomplex of the RNA polymerase II transcription initiation machinery which also operates during NER. It consists of six subunits and contains two DNA helicase activities (XPB and XPD) that unwind the DNA duplex in the immediate vicinity of the base damage. This local denaturation generates a bubble in the DNA, the ends of which comprise junctions between duplex and single-stranded DNA. The subsequent binding of the ERCC1–XPF heterodimeric subcomplex generates a completely assembled NER multiprotein complex. XPG is a duplex/single-stranded DNA endonuclease that cuts the damaged strand at such junctions 3’ to the site of base damage. Conversely, the ERCC1–XPF heterodimeric protein is a duplex/single-stranded DNA endonuclease that cuts the damaged strand at such junctions 5’ to the site of base damage. This bimodal incision generates an oligonucleotide fragment 27–30 nucleotides in length which includes the damaged base. This fragment is excised from the genome, concomitant with restoring the potential 27–30 nucleotide gap by repair synthesis. Repair synthesis requires DNA polymerases or , as well as the accessory replication proteins PCNA, RPA and RFC. The covalent integrity of the damaged strand is then restored by DNA ligase. Collectively, these biochemical events return the damaged DNA to its native chemistry and configuration. ERCC1, excision repair cross-complementing 1; PCNA, proliferating cell nuclear antigen; POL, polymerase; RFC, replication factor C; RPA, replication protein A; TFIIH, transcription factor IIH; XP, xeroderma pigmentosum.
|
Creator: WishartLab Created On: August 22, 2013 at 11:51 Last Updated: August 22, 2013 at 11:51 |
PW088438View Pathway |
Nucleotide Excision RepairDrosophila melanogaster
In order to pass genetic information from one generation to the next, all organisms must accurately replicate their genomes during each cell division. This includes the nuclear genome and mitochondrial and chloroplast genomes. These are normally replicated with high fidelity that is achieved through the action of accurate DNA repair. Nucleotide Excision Repair is one os several mechanisms of DNA repair. Nucleotide excision repair (NER) operates on base damage caused by exogenous agents (such as mutagenic and carcinogenic chemicals and photoproducts generated by sunlight exposure) that cause alterations in the chemistry and structure of the DNA duplex . Such damage is recognized by a protein called XPC, which is stably bound to another protein called HHRAD23B (R23). The binding of the XPC–HHRAD23 heterodimeric subcomplex is followed by the binding of several other proteins (XPA, RPA, TFIIH and XPG). Of these, XPA and RPA are believed to facilitate specific recognition of base damage. TFIIH is a subcomplex of the RNA polymerase II transcription initiation machinery which also operates during NER. It consists of six subunits and contains two DNA helicase activities (XPB and XPD) that unwind the DNA duplex in the immediate vicinity of the base damage. This local denaturation generates a bubble in the DNA, the ends of which comprise junctions between duplex and single-stranded DNA. The subsequent binding of the ERCC1–XPF heterodimeric subcomplex generates a completely assembled NER multiprotein complex. XPG is a duplex/single-stranded DNA endonuclease that cuts the damaged strand at such junctions 3’ to the site of base damage. Conversely, the ERCC1–XPF heterodimeric protein is a duplex/single-stranded DNA endonuclease that cuts the damaged strand at such junctions 5’ to the site of base damage. This bimodal incision generates an oligonucleotide fragment 27–30 nucleotides in length which includes the damaged base. This fragment is excised from the genome, concomitant with restoring the potential 27–30 nucleotide gap by repair synthesis. Repair synthesis requires DNA polymerases or , as well as the accessory replication proteins PCNA, RPA and RFC. The covalent integrity of the damaged strand is then restored by DNA ligase. Collectively, these biochemical events return the damaged DNA to its native chemistry and configuration. ERCC1, excision repair cross-complementing 1; PCNA, proliferating cell nuclear antigen; POL, polymerase; RFC, replication factor C; RPA, replication protein A; TFIIH, transcription factor IIH; XP, xeroderma pigmentosum.
|
Creator: Ana Marcu Created On: August 10, 2018 at 16:41 Last Updated: August 10, 2018 at 16:41 |
PW088403View Pathway |
Nucleotide Sugars MetabolismDrosophila melanogaster
Nucleotide sugars are defined as any nucleotide in which the distal phosphoric residue of a nucleoside 5'-diphosphate is in glycosidic linkage with a monosaccharide or monosaccharide derivative. There are nine sugar nucleotides and they can be classified depending on the type of the nucleoside forming them: UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GlcUA, UDP- Xyl, GDP-Man, GDP-Fuc and CMP-NeuNAc.
Turning back now to the pathway in question, namely the nucleotide sugar metabolism pathway, it should be noted that the nucleotide sugars play an important role. Indeed, they are donors of certain important residues of sugar which are vital to glycosylation and by extension tot the production of polysaccharides. This process produces the substrates for glycosyltransferases. These sugars have several additional roles. For example, nucleotide sugars serve a vital purpose as the intermediates in interconversions of nucleotide sugars that result in the creation and activation of certain sugars necessary in the glycosylation reaction in certain organisms.
Moreover, the process of glycosylation is attributed mostly (though not entirely) to the endoplasmic reticulum/golgi apparatus. Logically then, due to the important role of nucleotide sugars in glycosylation, a plethora of transporters exist which displace the sugars from their point of production, the cytoplasm, to where they are needed. In the case, the endoplasmic reticulum and golgi apparatus.
|
Creator: Ana Marcu Created On: August 10, 2018 at 15:47 Last Updated: August 10, 2018 at 15:47 |
PW088321View Pathway |
Nucleotide Sugars MetabolismRattus norvegicus
Nucleotide sugars are defined as any nucleotide in which the distal phosphoric residue of a nucleoside 5'-diphosphate is in glycosidic linkage with a monosaccharide or monosaccharide derivative. There are nine sugar nucleotides and they can be classified depending on the type of the nucleoside forming them: UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GlcUA, UDP- Xyl, GDP-Man, GDP-Fuc and CMP-NeuNAc.
Turning back now to the pathway in question, namely the nucleotide sugar metabolism pathway, it should be noted that the nucleotide sugars play an important role. Indeed, they are donors of certain important residues of sugar which are vital to glycosylation and by extension tot the production of polysaccharides. This process produces the substrates for glycosyltransferases. These sugars have several additional roles. For example, nucleotide sugars serve a vital purpose as the intermediates in interconversions of nucleotide sugars that result in the creation and activation of certain sugars necessary in the glycosylation reaction in certain organisms.
Moreover, the process of glycosylation is attributed mostly (though not entirely) to the endoplasmic reticulum/golgi apparatus. Logically then, due to the important role of nucleotide sugars in glycosylation, a plethora of transporters exist which displace the sugars from their point of production, the cytoplasm, to where they are needed. In the case, the endoplasmic reticulum and golgi apparatus.
|
Creator: Ana Marcu Created On: August 10, 2018 at 13:44 Last Updated: August 10, 2018 at 13:44 |
PW088458View Pathway |
Nucleotide Sugars MetabolismCaenorhabditis elegans
Nucleotide sugars are defined as any nucleotide in which the distal phosphoric residue of a nucleoside 5'-diphosphate is in glycosidic linkage with a monosaccharide or monosaccharide derivative. There are nine sugar nucleotides and they can be classified depending on the type of the nucleoside forming them: UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GlcUA, UDP- Xyl, GDP-Man, GDP-Fuc and CMP-NeuNAc.
Turning back now to the pathway in question, namely the nucleotide sugar metabolism pathway, it should be noted that the nucleotide sugars play an important role. Indeed, they are donors of certain important residues of sugar which are vital to glycosylation and by extension tot the production of polysaccharides. This process produces the substrates for glycosyltransferases. These sugars have several additional roles. For example, nucleotide sugars serve a vital purpose as the intermediates in interconversions of nucleotide sugars that result in the creation and activation of certain sugars necessary in the glycosylation reaction in certain organisms.
Moreover, the process of glycosylation is attributed mostly (though not entirely) to the endoplasmic reticulum/golgi apparatus. Logically then, due to the important role of nucleotide sugars in glycosylation, a plethora of transporters exist which displace the sugars from their point of production, the cytoplasm, to where they are needed. In the case, the endoplasmic reticulum and golgi apparatus.
|
Creator: Ana Marcu Created On: August 10, 2018 at 17:04 Last Updated: August 10, 2018 at 17:04 |
PW000031View Pathway |
Nucleotide Sugars MetabolismHomo sapiens
Nucleotide sugars are defined as any nucleotide in which the distal phosphoric residue of a nucleoside 5'-diphosphate is in glycosidic linkage with a monosaccharide or monosaccharide derivative. There are nine sugar nucleotides and they can be classified depending on the type of the nucleoside forming them: UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GlcUA, UDP- Xyl, GDP-Man, GDP-Fuc and CMP-NeuNAc.
Turning back now to the pathway in question, namely the nucleotide sugar metabolism pathway, it should be noted that the nucleotide sugars play an important role. Indeed, they are donors of certain important residues of sugar which are vital to glycosylation and by extension tot the production of polysaccharides. This process produces the substrates for glycosyltransferases. These sugars have several additional roles. For example, nucleotide sugars serve a vital purpose as the intermediates in interconversions of nucleotide sugars that result in the creation and activation of certain sugars necessary in the glycosylation reaction in certain organisms.
Moreover, the process of glycosylation is attributed mostly (though not entirely) to the endoplasmic reticulum/golgi apparatus. Logically then, due to the important role of nucleotide sugars in glycosylation, a plethora of transporters exist which displace the sugars from their point of production, the cytoplasm, to where they are needed. In the case, the endoplasmic reticulum and golgi apparatus.
|
Creator: WishartLab Created On: August 01, 2013 at 13:54 Last Updated: August 01, 2013 at 13:54 |
PW064623View Pathway |
Nucleotide Sugars MetabolismMus musculus
Nucleotide sugars are defined as any nucleotide in which the distal phosphoric residue of a nucleoside 5'-diphosphate is in glycosidic linkage with a monosaccharide or monosaccharide derivative. There are nine sugar nucleotides and they can be classified depending on the type of the nucleoside forming them: UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GlcUA, UDP- Xyl, GDP-Man, GDP-Fuc and CMP-NeuNAc.
Turning back now to the pathway in question, namely the nucleotide sugar metabolism pathway, it should be noted that the nucleotide sugars play an important role. Indeed, they are donors of certain important residues of sugar which are vital to glycosylation and by extension tot the production of polysaccharides. This process produces the substrates for glycosyltransferases. These sugars have several additional roles. For example, nucleotide sugars serve a vital purpose as the intermediates in interconversions of nucleotide sugars that result in the creation and activation of certain sugars necessary in the glycosylation reaction in certain organisms.
Moreover, the process of glycosylation is attributed mostly (though not entirely) to the endoplasmic reticulum/golgi apparatus. Logically then, due to the important role of nucleotide sugars in glycosylation, a plethora of transporters exist which displace the sugars from their point of production, the cytoplasm, to where they are needed. In the case, the endoplasmic reticulum and golgi apparatus.
|
Creator: Carin Li Created On: January 21, 2018 at 22:14 Last Updated: January 21, 2018 at 22:14 |
PW088224View Pathway |
Nucleotide Sugars MetabolismBos taurus
Nucleotide sugars are defined as any nucleotide in which the distal phosphoric residue of a nucleoside 5'-diphosphate is in glycosidic linkage with a monosaccharide or monosaccharide derivative. There are nine sugar nucleotides and they can be classified depending on the type of the nucleoside forming them: UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GlcUA, UDP- Xyl, GDP-Man, GDP-Fuc and CMP-NeuNAc.
Turning back now to the pathway in question, namely the nucleotide sugar metabolism pathway, it should be noted that the nucleotide sugars play an important role. Indeed, they are donors of certain important residues of sugar which are vital to glycosylation and by extension tot the production of polysaccharides. This process produces the substrates for glycosyltransferases. These sugars have several additional roles. For example, nucleotide sugars serve a vital purpose as the intermediates in interconversions of nucleotide sugars that result in the creation and activation of certain sugars necessary in the glycosylation reaction in certain organisms.
Moreover, the process of glycosylation is attributed mostly (though not entirely) to the endoplasmic reticulum/golgi apparatus. Logically then, due to the important role of nucleotide sugars in glycosylation, a plethora of transporters exist which displace the sugars from their point of production, the cytoplasm, to where they are needed. In the case, the endoplasmic reticulum and golgi apparatus.
|
Creator: Ana Marcu Created On: August 10, 2018 at 11:24 Last Updated: August 10, 2018 at 11:24 |