PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW015087View Pathway |
Phosphatidylcholine Biosynthesis PC(14:0/14:1(9Z))Homo sapiens
Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
|
Creator: Carin Li Created On: June 01, 2017 at 20:46 Last Updated: June 01, 2017 at 20:46 |
PW002809View Pathway |
Phosphatidylcholine Biosynthesis PC(14:0/15:0)Saccharomyces cerevisiae
Phosphatidyl ethanolamine reacts with S-adenosylmethionine through a phosphatdylethanolamine N-methyltransferase resulting in the release of hydrogen ion and S-adenosylhomocysteine an a PE-NMe. The PE-NMe reacts with S'-adenosylmethionine through a phosphotidyl-N-methylethanolamine N-methyltransferase resulting in the release of hydrogen ion, s-adenosylhomocysteine and PE-NMe2. The PE-NMe2 reacts with s-adenosylmethionine through a phosphotidyl-N-methylethanolamine N-methyltransferase resuilting in the release of hydrogen ion, s-adenosylhomocysteine and PC
|
Creator: Ana Marcu Created On: July 24, 2016 at 15:47 Last Updated: July 24, 2016 at 15:47 |
PW015088View Pathway |
Phosphatidylcholine Biosynthesis PC(14:0/15:0)Homo sapiens
Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
|
Creator: Carin Li Created On: June 01, 2017 at 20:47 Last Updated: June 01, 2017 at 20:47 |
PW081448View Pathway |
Phosphatidylcholine Biosynthesis PC(14:0/15:0)Bos taurus
Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
|
Creator: Carin Li Created On: August 05, 2018 at 15:56 Last Updated: August 05, 2018 at 15:56 |
PW087752View Pathway |
Phosphatidylcholine Biosynthesis PC(14:0/15:0)Rattus norvegicus
Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
|
Creator: Carin Li Created On: August 09, 2018 at 15:01 Last Updated: August 09, 2018 at 15:01 |
PW070997View Pathway |
Phosphatidylcholine Biosynthesis PC(14:0/15:0)Mus musculus
Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
|
Creator: Carin Li Created On: August 01, 2018 at 14:39 Last Updated: August 01, 2018 at 14:39 |
PW002832View Pathway |
Phosphatidylcholine Biosynthesis PC(14:0/15:1(11Z))Saccharomyces cerevisiae
Phosphatidyl ethanolamine reacts with S-adenosylmethionine through a phosphatdylethanolamine N-methyltransferase resulting in the release of hydrogen ion and S-adenosylhomocysteine an a PE-NMe. The PE-NMe reacts with S'-adenosylmethionine through a phosphotidyl-N-methylethanolamine N-methyltransferase resulting in the release of hydrogen ion, s-adenosylhomocysteine and PE-NMe2. The PE-NMe2 reacts with s-adenosylmethionine through a phosphotidyl-N-methylethanolamine N-methyltransferase resuilting in the release of hydrogen ion, s-adenosylhomocysteine and PC
|
Creator: Ana Marcu Created On: July 24, 2016 at 15:51 Last Updated: July 24, 2016 at 15:51 |
PW002831View Pathway |
Phosphatidylcholine Biosynthesis PC(14:0/15:1(9Z))Saccharomyces cerevisiae
Phosphatidyl ethanolamine reacts with S-adenosylmethionine through a phosphatdylethanolamine N-methyltransferase resulting in the release of hydrogen ion and S-adenosylhomocysteine an a PE-NMe. The PE-NMe reacts with S'-adenosylmethionine through a phosphotidyl-N-methylethanolamine N-methyltransferase resulting in the release of hydrogen ion, s-adenosylhomocysteine and PE-NMe2. The PE-NMe2 reacts with s-adenosylmethionine through a phosphotidyl-N-methylethanolamine N-methyltransferase resuilting in the release of hydrogen ion, s-adenosylhomocysteine and PC
|
Creator: Ana Marcu Created On: July 24, 2016 at 15:51 Last Updated: July 24, 2016 at 15:51 |
PW002859View Pathway |
Phosphatidylcholine Biosynthesis PC(14:0/16:0)Saccharomyces cerevisiae
Phosphatidyl ethanolamine reacts with S-adenosylmethionine through a phosphatdylethanolamine N-methyltransferase resulting in the release of hydrogen ion and S-adenosylhomocysteine an a PE-NMe. The PE-NMe reacts with S'-adenosylmethionine through a phosphotidyl-N-methylethanolamine N-methyltransferase resulting in the release of hydrogen ion, s-adenosylhomocysteine and PE-NMe2. The PE-NMe2 reacts with s-adenosylmethionine through a phosphotidyl-N-methylethanolamine N-methyltransferase resuilting in the release of hydrogen ion, s-adenosylhomocysteine and PC
|
Creator: Ana Marcu Created On: July 24, 2016 at 15:57 Last Updated: July 24, 2016 at 15:57 |
PW087753View Pathway |
Phosphatidylcholine Biosynthesis PC(14:0/16:0)Rattus norvegicus
Phosphatidylcholines (PC) are a class of phospholipids that incorporate a phosphocholine headgroup into a diacylglycerol backbone. They are the most abundant phospholipid in eukaryotic cell membranes and has both structural and signalling roles. In eukaryotes, there exist two phosphatidylcholine biosynthesis pathways: the Kennedy pathway and the methylation pathway. The Kennedy pathway begins with the direct phosphorylation of free choline into phosphocholine followed by conversion into CDP-choline and subsequently phosphatidylcholine. It is the major synthesis route in animals. The methylation pathway involves the 3 successive methylations of phosphatidylethanolamine to form phosphatidylcholine. The first reaction of the Kennedy pathway involves the cytosol-localized enzyme choline/ethanolamine kinase catalyzing the conversion of choline into phosphocholine. Second, choline-phosphate cytidylyltransferase, localized to the endoplasmic reticulum membrane, catalyzes the conversion of phosphocholine to CDP-choline. Last, choline/ethanolaminephosphotransferase catalyzes phosphatidylcholine biosynthesis from CDP-choline. It requires either magnesium or manganese ions as cofactors. A parallel Kennedy pathway forms phosphatidylethanolamine from ethanolamine - the only difference being a different enzyme, ethanolamine-phosphate cytidylyltransferase, catalyzing the second step. Phosphatidylethanolamine is also synthesized from phosphatidylserine in the mitochondrial membrane by phosphatidylserine decarboxylase. Phosphatidylethanolamine funnels into the methylation pathway in which phosphatidylethanolamine N-methyltransferase (PEMT) then catalyzes three sequential N-methylation steps to convert phosphatidylethanolamine to phosphatidylcholine. PEMT uses S-adenosyl-L-methionine as a methyl donor.
|
Creator: Carin Li Created On: August 09, 2018 at 15:02 Last Updated: August 09, 2018 at 15:02 |