PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW064776View Pathway |
protein
Ras Signaling PathwayHomo sapiens
RAS signalling pathway is one of the main pathways to transduce intracellular signals in response to mitogens to controls cell growth, survival and anti-apoptotic programs. RAS proteins are GTP-binding proteins and must be bound to GTP to be active. Active RAS binds and activates effector enzymes that control cell proliferation, survival and other cell behaviours. RAS interacts directly with the catalytic subunit of PI3K to activate lipid kinases controlling the activity of downstream enzymes. Some of these kinases have anti-apoptotic activity, playing an important role in the survival signal of RAS. PI3K is also involved in the regulation of the actin cytoskeleton and transcription factor pathways. RAS also effects exchange factors causing inhibition of transcription factors from FoxO family, part of promoting cell cycle arrest and apoptosis. Normal function of these proteins require post-transcriptional modification. Pathway mutations in activation may result in human tumours.
|
Creator: Debra Lipton Created On: June 21, 2018 at 16:31 Last Updated: June 21, 2018 at 16:31 |
PW109205View Pathway |
protein
Ras Signaling PathwayMus musculus
RAS signalling pathway is one of the main pathways to transduce intracellular signals in response to mitogens to controls cell growth, survival and anti-apoptotic programs. RAS proteins are GTP-binding proteins and must be bound to GTP to be active. Active RAS binds and activates effector enzymes that control cell proliferation, survival and other cell behaviours. RAS interacts directly with the catalytic subunit of PI3K to activate lipid kinases controlling the activity of downstream enzymes. Some of these kinases have anti-apoptotic activity, playing an important role in the survival signal of RAS. PI3K is also involved in the regulation of the actin cytoskeleton and transcription factor pathways. RAS also effects exchange factors causing inhibition of transcription factors from FoxO family, part of promoting cell cycle arrest and apoptosis. Normal function of these proteins require post-transcriptional modification. Pathway mutations in activation may result in human tumours.
|
Creator: Ana Marcu Created On: August 31, 2018 at 12:32 Last Updated: August 31, 2018 at 12:32 |
PW109281View Pathway |
protein
Ras Signaling PathwayRattus norvegicus
RAS signalling pathway is one of the main pathways to transduce intracellular signals in response to mitogens to controls cell growth, survival and anti-apoptotic programs. RAS proteins are GTP-binding proteins and must be bound to GTP to be active. Active RAS binds and activates effector enzymes that control cell proliferation, survival and other cell behaviours. RAS interacts directly with the catalytic subunit of PI3K to activate lipid kinases controlling the activity of downstream enzymes. Some of these kinases have anti-apoptotic activity, playing an important role in the survival signal of RAS. PI3K is also involved in the regulation of the actin cytoskeleton and transcription factor pathways. RAS also effects exchange factors causing inhibition of transcription factors from FoxO family, part of promoting cell cycle arrest and apoptosis. Normal function of these proteins require post-transcriptional modification. Pathway mutations in activation may result in human tumours.
|
Creator: Ana Marcu Created On: August 31, 2018 at 12:49 Last Updated: August 31, 2018 at 12:49 |
PW109252View Pathway |
protein
Ras Signaling PathwayBos taurus
RAS signalling pathway is one of the main pathways to transduce intracellular signals in response to mitogens to controls cell growth, survival and anti-apoptotic programs. RAS proteins are GTP-binding proteins and must be bound to GTP to be active. Active RAS binds and activates effector enzymes that control cell proliferation, survival and other cell behaviours. RAS interacts directly with the catalytic subunit of PI3K to activate lipid kinases controlling the activity of downstream enzymes. Some of these kinases have anti-apoptotic activity, playing an important role in the survival signal of RAS. PI3K is also involved in the regulation of the actin cytoskeleton and transcription factor pathways. RAS also effects exchange factors causing inhibition of transcription factors from FoxO family, part of promoting cell cycle arrest and apoptosis. Normal function of these proteins require post-transcriptional modification. Pathway mutations in activation may result in human tumours.
|
Creator: Ana Marcu Created On: August 31, 2018 at 12:41 Last Updated: August 31, 2018 at 12:41 |
PW128313View Pathway |
drug action
Rasagiline Action PathwayHomo sapiens
Rasagiline is a propargylamine and an irreversible monoamine oxidase inhibitor (MAOIs). It is indicated in the treatment of idiopathic Parkinson's disease as initial therapy or as adjunct therapy with levodopa. The monoamine oxidase is an enzyme that catalyzes the oxidative deamination of many amines like serotonin, norepinephrine, epinephrine, and dopamine. There are 2 isoforms of this protein: A and B. The first one is found in cells located in the periphery and breakdown serotonin, norepinephrine, epinephrine, dopamine, and tyramine. The second one, the B isoform, breakdowns phenylethylamine, norepinephrine, epinephrine, dopamine, and tyramine. This isoform is found in the extracellular tissues and mostly in the brain. The mechanism of action of the MAOIs is still not determined, it is thought that they act by increasing free serotonin and norepinephrine concentrations and/or by altering the concentrations of other amines in the CNS. MAO-A inhibition is thought to be more relevant to antidepressant activity than the inhibition caused by MAO B. Selective MAO B inhibitors have no antidepressant effects. The selectivity of rasagiline for inhibiting only MAO-B results in more dopamine in the cytosol and synapse of the neurons in the striatum. The increased dopamine level thus increases the dopaminergic activity. This helps to reduce the symptoms of Parkinson's disease that are caused by low levels of dopamine in the striatum. An overdose of this drug will result in drowsiness, faintness, hyperactivity, hallucinations, respiratory depression, convulsions, and coma. This drug is administered as an oral tablet.
|
Creator: Daphnee Created On: August 17, 2023 at 15:48 Last Updated: August 17, 2023 at 15:48 |
PW145399View Pathway |
drug action
Rasagiline Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 15:45 Last Updated: October 07, 2023 at 15:45 |
PW146421View Pathway |
drug action
Rebamipide Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 18:09 Last Updated: October 07, 2023 at 18:09 |
PW176516View Pathway |
Rebamipide Predicted Metabolism PathwayHomo sapiens
Metabolites of Rebamipide are predicted with biotransformer.
|
Creator: Omolola Created On: December 13, 2023 at 13:29 Last Updated: December 13, 2023 at 13:29 |
PW144363View Pathway |
drug action
Reboxetine Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 13:28 Last Updated: October 07, 2023 at 13:28 |
PW126100View Pathway |
physiological
Red Blood Cell Gas ExchangeHomo sapiens
The primary function of erythrocytes (red blood cells) is to exchange oxygen and carbon dioxide through tiny blood vessels called capillaries. In the lungs, oxygen diffuses into the blood, hemoglobin molecules release carbon dioxide picked up from body tissues. This allows oxygen to attach to the hemoglobin molecules and it can be carried to the rest of the body. Hemoglobin is a protein that makes blood red and carries oxygen throughout the circulation. The adult form of hemoglobin contains 2 alpha chains and 2 beta chains. When CO2 is removed from tissues, a portion of it is dissolved in the plasma and converted to bicarbonate. A majority of the CO2 is taken up by the RBCs and follows one of three transport pathways. 1. The CO2 is dissolved into the RBC cytoplasm. 2. CO2 is converted, by carbonic anhydrase, into bicarbonate which is exchanged at the cell membrane for a chloride ion (involved in the Chloride shift). This bicarbonate removal increases CO2 uptake into the cell. 3. CO2 is carried by carbaminohemoglobin which can be transported to the lung for removal. After offloading of oxygen into tissues, hemoglobin has an increased affinity for carbon dioxide and hydrogen ions (Haldane effect).
|
Creator: Ashley Zubkowski Created On: June 18, 2021 at 11:47 Last Updated: June 18, 2021 at 11:47 |