Loader

Pathways

PathWhiz ID Pathway Meta Data

PW123765

Pw123765 View Pathway
metabolic

Rhamnolipid Biosynthesis RL(16:1(3-OH,9Z)/12:1(3-OH,5Z))

Pseudomonas aeruginosa
Rhamnolipids (RL) consist of a fatty acyl moiety composed of a 3-(3-hydroxyalkanoyloxy)alkaloid acid (HAA) and a sugar moiety composed of one or two rhamnose sugars. Rhamnolipids function as surfactants and virulence factors and are involved in biofilm formation and cell motility. The rhamnose sugar component is produced via the dTDP-L-rhamnose biosynthetic pathway which forms dTDP-L-rhamnose from glucose 6-phosphate (G6P) in five steps. First, glucose 6-phosphate is converted into glucose 1-phosphate (G1P) via the enzyme phosphoglucomutase (AlgC). Second, glucose 1-phosphate is converted into dTDP-D-glucose via the enzyme glucose-1-phosphate thymidylyltransferase (RmlA). Third, dTDP-D-glucose is converted into dTDP-4-dehydro-6-deoxy-D-glucose via the enzyme dTDP-glucose 4,6-dehydratase (RmlB). Fourth, dTDP-4-dehydro-6-deoxy-D-glucose is converted into dTDP-4-dehydro-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC). Fifth, dTDP-4-dehydro-L-rhamnose is converted into dTDP-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose reductase (RmlD). The HAA component is synthesized from 3-hydroxyacyl-[acyl-carrier protein] diverted from fatty acid biosynthesis via the enzyme 3-(3-hydroxydecanoyloxy)decanoate synthase (RhIA). The final step in rhamnolipid biosynthesis is the formation of the glycosidic link between the rhamnose sugar component and the HAA component. This is accomplished by two rhamnosyltransferases (RhlB and RhlC) which catalyze sequential glycosyl transfer reactions to first form mono-rhamnolipids (via RhIB) and then di-rhamnolipids (via RhIC). RHlA, RHlB, and RHlC are associated with the inner membrane.

PW123766

Pw123766 View Pathway
metabolic

Rhamnolipid Biosynthesis RL(16:1(3-OH,9Z)/12:1(3-OH,6Z))

Pseudomonas aeruginosa
Rhamnolipids (RL) consist of a fatty acyl moiety composed of a 3-(3-hydroxyalkanoyloxy)alkaloid acid (HAA) and a sugar moiety composed of one or two rhamnose sugars. Rhamnolipids function as surfactants and virulence factors and are involved in biofilm formation and cell motility. The rhamnose sugar component is produced via the dTDP-L-rhamnose biosynthetic pathway which forms dTDP-L-rhamnose from glucose 6-phosphate (G6P) in five steps. First, glucose 6-phosphate is converted into glucose 1-phosphate (G1P) via the enzyme phosphoglucomutase (AlgC). Second, glucose 1-phosphate is converted into dTDP-D-glucose via the enzyme glucose-1-phosphate thymidylyltransferase (RmlA). Third, dTDP-D-glucose is converted into dTDP-4-dehydro-6-deoxy-D-glucose via the enzyme dTDP-glucose 4,6-dehydratase (RmlB). Fourth, dTDP-4-dehydro-6-deoxy-D-glucose is converted into dTDP-4-dehydro-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC). Fifth, dTDP-4-dehydro-L-rhamnose is converted into dTDP-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose reductase (RmlD). The HAA component is synthesized from 3-hydroxyacyl-[acyl-carrier protein] diverted from fatty acid biosynthesis via the enzyme 3-(3-hydroxydecanoyloxy)decanoate synthase (RhIA). The final step in rhamnolipid biosynthesis is the formation of the glycosidic link between the rhamnose sugar component and the HAA component. This is accomplished by two rhamnosyltransferases (RhlB and RhlC) which catalyze sequential glycosyl transfer reactions to first form mono-rhamnolipids (via RhIB) and then di-rhamnolipids (via RhIC). RHlA, RHlB, and RHlC are associated with the inner membrane.

PW123767

Pw123767 View Pathway
metabolic

Rhamnolipid Biosynthesis RL(16:1(3-OH,9Z)/14:1(3-OH,5Z))

Pseudomonas aeruginosa
Rhamnolipids (RL) consist of a fatty acyl moiety composed of a 3-(3-hydroxyalkanoyloxy)alkaloid acid (HAA) and a sugar moiety composed of one or two rhamnose sugars. Rhamnolipids function as surfactants and virulence factors and are involved in biofilm formation and cell motility. The rhamnose sugar component is produced via the dTDP-L-rhamnose biosynthetic pathway which forms dTDP-L-rhamnose from glucose 6-phosphate (G6P) in five steps. First, glucose 6-phosphate is converted into glucose 1-phosphate (G1P) via the enzyme phosphoglucomutase (AlgC). Second, glucose 1-phosphate is converted into dTDP-D-glucose via the enzyme glucose-1-phosphate thymidylyltransferase (RmlA). Third, dTDP-D-glucose is converted into dTDP-4-dehydro-6-deoxy-D-glucose via the enzyme dTDP-glucose 4,6-dehydratase (RmlB). Fourth, dTDP-4-dehydro-6-deoxy-D-glucose is converted into dTDP-4-dehydro-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC). Fifth, dTDP-4-dehydro-L-rhamnose is converted into dTDP-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose reductase (RmlD). The HAA component is synthesized from 3-hydroxyacyl-[acyl-carrier protein] diverted from fatty acid biosynthesis via the enzyme 3-(3-hydroxydecanoyloxy)decanoate synthase (RhIA). The final step in rhamnolipid biosynthesis is the formation of the glycosidic link between the rhamnose sugar component and the HAA component. This is accomplished by two rhamnosyltransferases (RhlB and RhlC) which catalyze sequential glycosyl transfer reactions to first form mono-rhamnolipids (via RhIB) and then di-rhamnolipids (via RhIC). RHlA, RHlB, and RHlC are associated with the inner membrane.

PW123768

Pw123768 View Pathway
metabolic

Rhamnolipid Biosynthesis RL(16:1(3-OH,9Z)/14:1(3-OH,7Z))

Pseudomonas aeruginosa
Rhamnolipids (RL) consist of a fatty acyl moiety composed of a 3-(3-hydroxyalkanoyloxy)alkaloid acid (HAA) and a sugar moiety composed of one or two rhamnose sugars. Rhamnolipids function as surfactants and virulence factors and are involved in biofilm formation and cell motility. The rhamnose sugar component is produced via the dTDP-L-rhamnose biosynthetic pathway which forms dTDP-L-rhamnose from glucose 6-phosphate (G6P) in five steps. First, glucose 6-phosphate is converted into glucose 1-phosphate (G1P) via the enzyme phosphoglucomutase (AlgC). Second, glucose 1-phosphate is converted into dTDP-D-glucose via the enzyme glucose-1-phosphate thymidylyltransferase (RmlA). Third, dTDP-D-glucose is converted into dTDP-4-dehydro-6-deoxy-D-glucose via the enzyme dTDP-glucose 4,6-dehydratase (RmlB). Fourth, dTDP-4-dehydro-6-deoxy-D-glucose is converted into dTDP-4-dehydro-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC). Fifth, dTDP-4-dehydro-L-rhamnose is converted into dTDP-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose reductase (RmlD). The HAA component is synthesized from 3-hydroxyacyl-[acyl-carrier protein] diverted from fatty acid biosynthesis via the enzyme 3-(3-hydroxydecanoyloxy)decanoate synthase (RhIA). The final step in rhamnolipid biosynthesis is the formation of the glycosidic link between the rhamnose sugar component and the HAA component. This is accomplished by two rhamnosyltransferases (RhlB and RhlC) which catalyze sequential glycosyl transfer reactions to first form mono-rhamnolipids (via RhIB) and then di-rhamnolipids (via RhIC). RHlA, RHlB, and RHlC are associated with the inner membrane.

PW123769

Pw123769 View Pathway
metabolic

Rhamnolipid Biosynthesis RL(16:1(3-OH,9Z)/16:1(3-OH,9Z))

Pseudomonas aeruginosa
Rhamnolipids (RL) consist of a fatty acyl moiety composed of a 3-(3-hydroxyalkanoyloxy)alkaloid acid (HAA) and a sugar moiety composed of one or two rhamnose sugars. Rhamnolipids function as surfactants and virulence factors and are involved in biofilm formation and cell motility. The rhamnose sugar component is produced via the dTDP-L-rhamnose biosynthetic pathway which forms dTDP-L-rhamnose from glucose 6-phosphate (G6P) in five steps. First, glucose 6-phosphate is converted into glucose 1-phosphate (G1P) via the enzyme phosphoglucomutase (AlgC). Second, glucose 1-phosphate is converted into dTDP-D-glucose via the enzyme glucose-1-phosphate thymidylyltransferase (RmlA). Third, dTDP-D-glucose is converted into dTDP-4-dehydro-6-deoxy-D-glucose via the enzyme dTDP-glucose 4,6-dehydratase (RmlB). Fourth, dTDP-4-dehydro-6-deoxy-D-glucose is converted into dTDP-4-dehydro-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC). Fifth, dTDP-4-dehydro-L-rhamnose is converted into dTDP-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose reductase (RmlD). The HAA component is synthesized from 3-hydroxyacyl-[acyl-carrier protein] diverted from fatty acid biosynthesis via the enzyme 3-(3-hydroxydecanoyloxy)decanoate synthase (RhIA). The final step in rhamnolipid biosynthesis is the formation of the glycosidic link between the rhamnose sugar component and the HAA component. This is accomplished by two rhamnosyltransferases (RhlB and RhlC) which catalyze sequential glycosyl transfer reactions to first form mono-rhamnolipids (via RhIB) and then di-rhamnolipids (via RhIC). RHlA, RHlB, and RHlC are associated with the inner membrane.

PW123761

Pw123761 View Pathway
metabolic

Rhamnolipid Biosynthesis RL(16:1(3-OH,9Z)/6:0(3-OH))

Pseudomonas aeruginosa
Rhamnolipids (RL) consist of a fatty acyl moiety composed of a 3-(3-hydroxyalkanoyloxy)alkaloid acid (HAA) and a sugar moiety composed of one or two rhamnose sugars. Rhamnolipids function as surfactants and virulence factors and are involved in biofilm formation and cell motility. The rhamnose sugar component is produced via the dTDP-L-rhamnose biosynthetic pathway which forms dTDP-L-rhamnose from glucose 6-phosphate (G6P) in five steps. First, glucose 6-phosphate is converted into glucose 1-phosphate (G1P) via the enzyme phosphoglucomutase (AlgC). Second, glucose 1-phosphate is converted into dTDP-D-glucose via the enzyme glucose-1-phosphate thymidylyltransferase (RmlA). Third, dTDP-D-glucose is converted into dTDP-4-dehydro-6-deoxy-D-glucose via the enzyme dTDP-glucose 4,6-dehydratase (RmlB). Fourth, dTDP-4-dehydro-6-deoxy-D-glucose is converted into dTDP-4-dehydro-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC). Fifth, dTDP-4-dehydro-L-rhamnose is converted into dTDP-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose reductase (RmlD). The HAA component is synthesized from 3-hydroxyacyl-[acyl-carrier protein] diverted from fatty acid biosynthesis via the enzyme 3-(3-hydroxydecanoyloxy)decanoate synthase (RhIA). The final step in rhamnolipid biosynthesis is the formation of the glycosidic link between the rhamnose sugar component and the HAA component. This is accomplished by two rhamnosyltransferases (RhlB and RhlC) which catalyze sequential glycosyl transfer reactions to first form mono-rhamnolipids (via RhIB) and then di-rhamnolipids (via RhIC). RHlA, RHlB, and RHlC are associated with the inner membrane.

PW123762

Pw123762 View Pathway
metabolic

Rhamnolipid Biosynthesis RL(16:1(3-OH,9Z)/8:0(3-OH))

Pseudomonas aeruginosa
Rhamnolipids (RL) consist of a fatty acyl moiety composed of a 3-(3-hydroxyalkanoyloxy)alkaloid acid (HAA) and a sugar moiety composed of one or two rhamnose sugars. Rhamnolipids function as surfactants and virulence factors and are involved in biofilm formation and cell motility. The rhamnose sugar component is produced via the dTDP-L-rhamnose biosynthetic pathway which forms dTDP-L-rhamnose from glucose 6-phosphate (G6P) in five steps. First, glucose 6-phosphate is converted into glucose 1-phosphate (G1P) via the enzyme phosphoglucomutase (AlgC). Second, glucose 1-phosphate is converted into dTDP-D-glucose via the enzyme glucose-1-phosphate thymidylyltransferase (RmlA). Third, dTDP-D-glucose is converted into dTDP-4-dehydro-6-deoxy-D-glucose via the enzyme dTDP-glucose 4,6-dehydratase (RmlB). Fourth, dTDP-4-dehydro-6-deoxy-D-glucose is converted into dTDP-4-dehydro-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC). Fifth, dTDP-4-dehydro-L-rhamnose is converted into dTDP-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose reductase (RmlD). The HAA component is synthesized from 3-hydroxyacyl-[acyl-carrier protein] diverted from fatty acid biosynthesis via the enzyme 3-(3-hydroxydecanoyloxy)decanoate synthase (RhIA). The final step in rhamnolipid biosynthesis is the formation of the glycosidic link between the rhamnose sugar component and the HAA component. This is accomplished by two rhamnosyltransferases (RhlB and RhlC) which catalyze sequential glycosyl transfer reactions to first form mono-rhamnolipids (via RhIB) and then di-rhamnolipids (via RhIC). RHlA, RHlB, and RHlC are associated with the inner membrane.

PW123691

Pw123691 View Pathway
metabolic

Rhamnolipid Biosynthesis RL(6:0(3-OH)/10:0(3-OH))

Pseudomonas aeruginosa
Rhamnolipids (RL) consist of a fatty acyl moiety composed of a 3-(3-hydroxyalkanoyloxy)alkaloid acid (HAA) and a sugar moiety composed of one or two rhamnose sugars. Rhamnolipids function as surfactants and virulence factors and are involved in biofilm formation and cell motility. The rhamnose sugar component is produced via the dTDP-L-rhamnose biosynthetic pathway which forms dTDP-L-rhamnose from glucose 6-phosphate (G6P) in five steps. First, glucose 6-phosphate is converted into glucose 1-phosphate (G1P) via the enzyme phosphoglucomutase (AlgC). Second, glucose 1-phosphate is converted into dTDP-D-glucose via the enzyme glucose-1-phosphate thymidylyltransferase (RmlA). Third, dTDP-D-glucose is converted into dTDP-4-dehydro-6-deoxy-D-glucose via the enzyme dTDP-glucose 4,6-dehydratase (RmlB). Fourth, dTDP-4-dehydro-6-deoxy-D-glucose is converted into dTDP-4-dehydro-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC). Fifth, dTDP-4-dehydro-L-rhamnose is converted into dTDP-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose reductase (RmlD). The HAA component is synthesized from 3-hydroxyacyl-[acyl-carrier protein] diverted from fatty acid biosynthesis via the enzyme 3-(3-hydroxydecanoyloxy)decanoate synthase (RhIA). The final step in rhamnolipid biosynthesis is the formation of the glycosidic link between the rhamnose sugar component and the HAA component. This is accomplished by two rhamnosyltransferases (RhlB and RhlC) which catalyze sequential glycosyl transfer reactions to first form mono-rhamnolipids (via RhIB) and then di-rhamnolipids (via RhIC). RHlA, RHlB, and RHlC are associated with the inner membrane.

PW123692

Pw123692 View Pathway
metabolic

Rhamnolipid Biosynthesis RL(6:0(3-OH)/12:0(3-OH))

Pseudomonas aeruginosa
Rhamnolipids (RL) consist of a fatty acyl moiety composed of a 3-(3-hydroxyalkanoyloxy)alkaloid acid (HAA) and a sugar moiety composed of one or two rhamnose sugars. Rhamnolipids function as surfactants and virulence factors and are involved in biofilm formation and cell motility. The rhamnose sugar component is produced via the dTDP-L-rhamnose biosynthetic pathway which forms dTDP-L-rhamnose from glucose 6-phosphate (G6P) in five steps. First, glucose 6-phosphate is converted into glucose 1-phosphate (G1P) via the enzyme phosphoglucomutase (AlgC). Second, glucose 1-phosphate is converted into dTDP-D-glucose via the enzyme glucose-1-phosphate thymidylyltransferase (RmlA). Third, dTDP-D-glucose is converted into dTDP-4-dehydro-6-deoxy-D-glucose via the enzyme dTDP-glucose 4,6-dehydratase (RmlB). Fourth, dTDP-4-dehydro-6-deoxy-D-glucose is converted into dTDP-4-dehydro-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC). Fifth, dTDP-4-dehydro-L-rhamnose is converted into dTDP-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose reductase (RmlD). The HAA component is synthesized from 3-hydroxyacyl-[acyl-carrier protein] diverted from fatty acid biosynthesis via the enzyme 3-(3-hydroxydecanoyloxy)decanoate synthase (RhIA). The final step in rhamnolipid biosynthesis is the formation of the glycosidic link between the rhamnose sugar component and the HAA component. This is accomplished by two rhamnosyltransferases (RhlB and RhlC) which catalyze sequential glycosyl transfer reactions to first form mono-rhamnolipids (via RhIB) and then di-rhamnolipids (via RhIC). RHlA, RHlB, and RHlC are associated with the inner membrane.

PW123693

Pw123693 View Pathway
metabolic

Rhamnolipid Biosynthesis RL(6:0(3-OH)/12:1(3-OH,5Z))

Pseudomonas aeruginosa
Rhamnolipids (RL) consist of a fatty acyl moiety composed of a 3-(3-hydroxyalkanoyloxy)alkaloid acid (HAA) and a sugar moiety composed of one or two rhamnose sugars. Rhamnolipids function as surfactants and virulence factors and are involved in biofilm formation and cell motility. The rhamnose sugar component is produced via the dTDP-L-rhamnose biosynthetic pathway which forms dTDP-L-rhamnose from glucose 6-phosphate (G6P) in five steps. First, glucose 6-phosphate is converted into glucose 1-phosphate (G1P) via the enzyme phosphoglucomutase (AlgC). Second, glucose 1-phosphate is converted into dTDP-D-glucose via the enzyme glucose-1-phosphate thymidylyltransferase (RmlA). Third, dTDP-D-glucose is converted into dTDP-4-dehydro-6-deoxy-D-glucose via the enzyme dTDP-glucose 4,6-dehydratase (RmlB). Fourth, dTDP-4-dehydro-6-deoxy-D-glucose is converted into dTDP-4-dehydro-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC). Fifth, dTDP-4-dehydro-L-rhamnose is converted into dTDP-L-rhamnose via the enzyme dTDP-4-dehydrorhamnose reductase (RmlD). The HAA component is synthesized from 3-hydroxyacyl-[acyl-carrier protein] diverted from fatty acid biosynthesis via the enzyme 3-(3-hydroxydecanoyloxy)decanoate synthase (RhIA). The final step in rhamnolipid biosynthesis is the formation of the glycosidic link between the rhamnose sugar component and the HAA component. This is accomplished by two rhamnosyltransferases (RhlB and RhlC) which catalyze sequential glycosyl transfer reactions to first form mono-rhamnolipids (via RhIB) and then di-rhamnolipids (via RhIC). RHlA, RHlB, and RHlC are associated with the inner membrane.