Loader

Pathways

PathWhiz ID Pathway Meta Data

PW341081

Pw341081 View Pathway
metabolic

Ribose Degradation

Paenibacillus lactis 154
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW341118

Pw341118 View Pathway
metabolic

Ribose Degradation

Phascolarctobacterium succinatutens YIT 12067
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW341132

Pw341132 View Pathway
metabolic

Ribose Degradation

Dialister invisus DSM 15470
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW341073

Pw341073 View Pathway
metabolic

Ribose Degradation

Brachyspira pilosicoli B2904
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW341105

Pw341105 View Pathway
metabolic

Ribose Degradation

Pseudoflavonifractor capillosus ATCC 29799
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW358585

Pw358585 View Pathway
metabolic

Ribose Degradation

Escherichia coli str. K-12 substr. DH10B
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW358580

Pw358580 View Pathway
metabolic

Ribose Degradation

Escherichia coli 536
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW358600

Pw358600 View Pathway
metabolic

Ribose Degradation

Escherichia coli O26:H11 str. 11368
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW358597

Pw358597 View Pathway
metabolic

Ribose Degradation

Escherichia coli O157:H7 str. TW14359
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW340549

Pw340549 View Pathway
metabolic

Ribose Degradation

Bacteroides oleiciplenus YIT 12058
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.