Loader

Pathways

PathWhiz ID Pathway Meta Data

PW122113

Pw122113 View Pathway
disease

Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency

Rattus norvegicus
Succinyl CoA: 3-Ketoacid CoA Transferase (SCOT) deficiency is a rare inherited metabolic disorder causing reduction of ketone body utilization. In normal functioning patients, ketone bodies such as Acetoacetate (AcAc) and 3‐hydroxybutyrate (3HB) are metabolized inside the liver from free fatty acids. Next, ketone bodies are transported to extrahepatic tissues via the blood stream. Once in extrahepatic tissues, SCOT converts AcAc to acetoacetyl‐CoA and T2 cleaves acetoacetyl‐CoA into acetyl‐CoA. This process is crucial for producing alternative energy sources to glucose in order to maintain blood glucose levels. Patients with SCOT deficiency have this process disturbed and ketoacidosis which is the acidification of the bloodstream due to excess ketone body accumulation, can occur. Current treatments include avoiding actions that could onset ketoacidosis such as fasting and early infusion of glucose. The severity of SCOT deficiency differs from patient to patient. Some exhibit severe genotypes where ketones are always in abundance in the body, while others could have mild genotypes with no preeminent ketosis however both could exhibit ketoacidotic episodes.

PW000545

Pw000545 View Pathway
disease

Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency

Homo sapiens
Succinyl CoA: 3-Ketoacid CoA Transferase (SCOT) deficiency is a rare inherited metabolic disorder causing reduction of ketone body utilization. In normal functioning patients, ketone bodies such as Acetoacetate (AcAc) and 3‐hydroxybutyrate (3HB) are metabolized inside the liver from free fatty acids. Next, ketone bodies are transported to extrahepatic tissues via the blood stream. Once in extrahepatic tissues, SCOT converts AcAc to acetoacetyl‐CoA and T2 cleaves acetoacetyl‐CoA into acetyl‐CoA. This process is crucial for producing alternative energy sources to glucose in order to maintain blood glucose levels. Patients with SCOT deficiency have this process disturbed and ketoacidosis which is the acidification of the bloodstream due to excess ketone body accumulation, can occur. Current treatments include avoiding actions that could onset ketoacidosis such as fasting and early infusion of glucose. The severity of SCOT deficiency differs from patient to patient. Some exhibit severe genotypes where ketones are always in abundance in the body, while others could have mild genotypes with no preeminent ketosis however both could exhibit ketoacidotic episodes.

PW127350

Pw127350 View Pathway
disease

Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency

Homo sapiens
Disease Pathway Succinyl CoA: 3-Ketoacid CoA Transferase (SCOT) deficiency is a rare inherited metabolic disorder causing reduction of ketone body utilization. In normal functioning patients, ketone bodies such as Acetoacetate (AcAc) and 3‐hydroxybutyrate (3HB) are metabolized inside the liver from free fatty acids. Next, ketone bodies are transported to extrahepatic tissues via the blood stream. Once in extrahepatic tissues, SCOT converts AcAc to acetoacetyl‐CoA and T2 cleaves acetoacetyl‐CoA into acetyl‐CoA. This process is crucial for producing alternative energy sources to glucose in order to maintain blood glucose levels. Patients with SCOT deficiency have this process disturbed and ketoacidosis which is the acidification of the bloodstream due to excess ketone body accumulation, can occur. Current treatments include avoiding actions that could onset ketoacidosis such as fasting and early infusion of glucose. The severity of SCOT deficiency differs from patient to patient. Some exhibit severe genotypes where ketones are always in abundance in the body, while others could have mild genotypes with no preeminent ketosis however both could exhibit ketoacidotic episodes.

PW144333

Pw144333 View Pathway
drug action

Succinylcholine Drug Metabolism Action Pathway

Homo sapiens

PW144490

Pw144490 View Pathway
drug action

Sucralfate Drug Metabolism Action Pathway

Homo sapiens

PW121877

Pw121877 View Pathway
disease

Sucrase-Isomaltase Deficiency

Mus musculus
Congenital sucrase-isomaltase deficiency is a rare inborn error of metabolism (IEM) and autosomal recessive disorder caused by mutatins in the SI gene which encodes for the enzyme sucrase-isomaltase. Sucrase-isomaltase catalyzes the breakdown of sucrose, maltose and larger carbohydrates. Sucrose and maltose are disaccharides, and are broken down into simple sugars during digestion. Sucrose is broken down into glucose and fructose, while maltose is broken down into two glucose molecules. This disorder is characterized by stomach cramps, bloating, excess gas production, and diarrhea after ingestion of sucrose and maltose. These digestive problems can lead to failure to thrive and malnutrition. There is no cure for Sucrase-Isomaltase Deficiency, however orally administrated Sacrosidase can help relieve symptoms. Similarly, restricting high sugar diets can also help. Most affected children are better able to tolerate sucrose and maltose as they get older. Frequency of Sucrase-Isomaltase Deficiency is about 1 in 5,000 with European descent. 

PW122101

Pw122101 View Pathway
disease

Sucrase-Isomaltase Deficiency

Rattus norvegicus
Congenital sucrase-isomaltase deficiency is a rare inborn error of metabolism (IEM) and autosomal recessive disorder caused by mutatins in the SI gene which encodes for the enzyme sucrase-isomaltase. Sucrase-isomaltase catalyzes the breakdown of sucrose, maltose and larger carbohydrates. Sucrose and maltose are disaccharides, and are broken down into simple sugars during digestion. Sucrose is broken down into glucose and fructose, while maltose is broken down into two glucose molecules. This disorder is characterized by stomach cramps, bloating, excess gas production, and diarrhea after ingestion of sucrose and maltose. These digestive problems can lead to failure to thrive and malnutrition. There is no cure for Sucrase-Isomaltase Deficiency, however orally administrated Sacrosidase can help relieve symptoms. Similarly, restricting high sugar diets can also help. Most affected children are better able to tolerate sucrose and maltose as they get older. Frequency of Sucrase-Isomaltase Deficiency is about 1 in 5,000 with European descent. 

PW000533

Pw000533 View Pathway
disease

Sucrase-Isomaltase Deficiency

Homo sapiens
Congenital sucrase-isomaltase deficiency is a rare inborn error of metabolism (IEM) and autosomal recessive disorder caused by mutatins in the SI gene which encodes for the enzyme sucrase-isomaltase. Sucrase-isomaltase catalyzes the breakdown of sucrose, maltose and larger carbohydrates. Sucrose and maltose are disaccharides, and are broken down into simple sugars during digestion. Sucrose is broken down into glucose and fructose, while maltose is broken down into two glucose molecules. This disorder is characterized by stomach cramps, bloating, excess gas production, and diarrhea after ingestion of sucrose and maltose. These digestive problems can lead to failure to thrive and malnutrition. There is no cure for Sucrase-Isomaltase Deficiency, however orally administrated Sacrosidase can help relieve symptoms. Similarly, restricting high sugar diets can also help. Most affected children are better able to tolerate sucrose and maltose as they get older. Frequency of Sucrase-Isomaltase Deficiency is about 1 in 5,000 with European descent. 

PW127331

Pw127331 View Pathway
disease

Sucrase-Isomaltase Deficiency

Homo sapiens
Congenital sucrase-isomaltase deficiency is a rare inborn error of metabolism (IEM) and autosomal recessive disorder caused by mutatins in the SI gene which encodes for the enzyme sucrase-isomaltase. Sucrase-isomaltase catalyzes the breakdown of sucrose, maltose and larger carbohydrates. Sucrose and maltose are disaccharides, and are broken down into simple sugars during digestion. Sucrose is broken down into glucose and fructose, while maltose is broken down into two glucose molecules. This disorder is characterized by stomach cramps, bloating, excess gas production, and diarrhea after ingestion of sucrose and maltose. These digestive problems can lead to failure to thrive and malnutrition. There is no cure for Sucrase-Isomaltase Deficiency, however orally administrated Sacrosidase can help relieve symptoms. Similarly, restricting high sugar diets can also help. Most affected children are better able to tolerate sucrose and maltose as they get older. Frequency of Sucrase-Isomaltase Deficiency is about 1 in 5,000 with European descent. 

PW000841

Pw000841 View Pathway
metabolic

Sucrose Biosynthesis

Solanum lycopersicum
The major product of photosynthesis in most plants, including Solanum lycopersicum, is sucrose. Sucrose is essential for plant development, growth, storage of carbon, stress protection, signal transduction, among other functions. In plants that undergo photosynthesis, D-glyceraldehyde 3-phosphate is transported into the cytoplasm from the chloropast. It is then modified by enzymes involved in gluconeogenesis and transformed to beta-D-fructofuranose 6-phosphate which is then used to produce sucrose. This is done by synthesizing the phosphorylated entity of sucrose, known as sucrose 6F-phosphate, and then dephosphorylating the chemical via the enzyme sucrose-phosphate phosphatase into sucrose. Interestingly, sucrose is synthesized in plants and cyanobacteria, but not in other organisms. Many plants also contain the enzyme sucrose synthase, whose title is misleading because under physiological conditions this enzyme usually catalyzes a sucrose degradation reaction, but under rare circumstances can also generate sucrose as a product.