Loader

Pathways

PathWhiz ID Pathway Meta Data

PW146175

Pw146175 View Pathway
drug action

Thiosulfuric acid Drug Metabolism Action Pathway

Homo sapiens

PW132352

Pw132352 View Pathway
metabolic

Thiotepa Drug Metabolism

Homo sapiens
Thiotepa is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Thiotepa passes through the liver and is then excreted from the body mainly through the kidney.

PW145563

Pw145563 View Pathway
drug action

Thiotepa Drug Metabolism Action Pathway

Homo sapiens

PW128181

Pw128181 View Pathway
drug action

Thiothixene Dopamine Antagonist Action Pathway

Homo sapiens
Thiothixene is an antipsychotic of the thioxanthene series. Thiothixene acts as an antagonist (blocking agent) on different post-sysnaptic receptors -on dopaminergic-receptors (subtypes D1, D2, D3 and D4 - different antipsychotic properties on productive and unproductive symptoms), on serotonergic-receptors (5-HT1 and 5-HT2, with anxiolytic, antidepressive and antiaggressive properties as well as an attenuation of extrapypramidal side-effects, but also leading to weight gain, fall in blood pressure, sedation and ejaculation difficulties), on histaminergic-receptors (H1-receptors, sedation, antiemesis, vertigo, fall in blood pressure and weight gain), alpha1/alpha2-receptors (antisympathomimetic properties, lowering of blood pressure, reflex tachycardia, vertigo, sedation, hypersalivation and incontinence as well as sexual dysfunction, but may also attenuate pseudoparkinsonism - controversial) and finally on muscarinic (cholinergic) M1/M2-receptors (causing anticholinergic symptoms like dry mouth, blurred vision, obstipation, difficulty/inability to urinate, sinus tachycardia, ECG-changes and loss of memory, but the anticholinergic action may attenuate extrapyramidal side-effects)

PW145486

Pw145486 View Pathway
drug action

Thiothixene Drug Metabolism Action Pathway

Homo sapiens

PW132294

Pw132294 View Pathway
metabolic

Thiram Drug Metabolism

Homo sapiens
Thiram is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Thiram passes through the liver and is then excreted from the body mainly through the kidney.

PW146617

Pw146617 View Pathway
drug action

Thiram Drug Metabolism Action Pathway

Homo sapiens

PW146196

Pw146196 View Pathway
drug action

Thonzonium Drug Metabolism Action Pathway

Homo sapiens

PW146312

Pw146312 View Pathway
drug action

Thonzylamine Drug Metabolism Action Pathway

Homo sapiens

PW176620

Pw176620 View Pathway
drug action

Thonzylamine H1 Antihistamine Smooth Muscle Relaxation Action Pathway

Homo sapiens
Thonzylamine is an H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Thonzylamine also inhibits the H1 histamine receptor on bronchiole smooth muscle myocytes. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin.Calcium bound calmodulin is required for the activation of myosin light chain kinase. This prevents the phosphorylation of myosin light chain 3, causing an accumulation of myosin light chain 3. This causes muscle relaxation, opening up the bronchioles in the lungs, making breathing easier.