Loader

Pathways

PathWhiz ID Pathway Meta Data

PW330115

Pw330115 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Tannerella forsythia
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW327814

Pw327814 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Bacteroides intestinalis
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW331466

Pw331466 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Megamonas funiformis YIT 11815
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW331461

Pw331461 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Pseudoflavonifractor capillosus ATCC 29799
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW002402

Pw002402 View Pathway
metabolic

Serine Metabolism

Saccharomyces cerevisiae
The biosynthesis of serine begins with 3-phospho-D-glycerate being metabolize into 3-phosphohydroxypyruvate through a 3-phosphoglycerate dehydrogenase. The resulting compound 3-phosphohydroxypyruvate is transaminated into 3-phospho-L-serine through a phosphoserine transaminase. This is followed by 3-phospho-L-serine being dephosphorylated through a phosphoserine phosphatase resulting in the release of a phosphate and Serine. Serine can also be incorporated into the mitochondrion and then serine can then be used to synthesize glycine through a mitochondrial serine hydroxymethyltransferase. Glycine is then used to synthesize formic acid by first being metabolized into 5,10 methylene THF, which is transformed into a 5,10 methenyltetrahydrofolate , followed by an N10 formyl tetrahydrofolate and lastly formic acid, all through a mitochondrial C1-tetrahydrofolate synthase. In the cytosol serine can either be degraded to synthesize glycine through a serine hydroxymethyltransferase or it can be degraded into 2-aminoprop-2-enoate. The latter compound can be spontaneously be converted first into 2-iminopropanoate and this compound is then converted into pyruvic acid.

PW002553

Pw002553 View Pathway
metabolic

Serine Metabolism

Arabidopsis thaliana
The biosynthesis of serine begins in the chloroplast with 3-phospho-D-glycerate being metabolize into 3-phosphohydroxypyruvate through a 3-phosphoglycerate dehydrogenase. The resulting compound 3-phosphohydroxypyruvate is transaminated into 3-phospho-L-serine through a phosphoserine transaminase. This is followed by 3-phospho-L-serine being dephosphorylated through a phosphoserine phosphatase resulting in the release of a phosphate and Serine. Serine can also be incorporated into the mitochondrion and then serine can then be used to synthesize glycine through a mitochondrial serine hydroxymethyltransferase. Glycine is then used to synthesize formic acid by first being metabolized into 5,10 methylene THF, which is transformed into a 5,10 methenyltetrahydrofolate , followed by an N10 formyl tetrahydrofolate and lastly formic acid, all through a mitochondrial C1-tetrahydrofolate synthase. It can also be used in tryptophan biosynthesis, glycine biosynthesis and cysteine biosynthesis

PW126971

Pw126971 View Pathway
drug action

Sertaconazole Action Pathway

Homo sapiens
Sertaconazole is a topical antifungal agent used to treat interdigital tinea pedis (athelete's foot) in immunocompromised patients. Sertaconazole inhibits lanosterol 14-alpha demethylase in the endoplasmic reticulum of fungal cells. Lanosterol 14-alpha demethylase is the enzyme that catalyzes the synthesis of 4,4'-dimethyl cholesta-8,14,24-triene-3-beta-ol from lanosterol. With this enzyme inhibited ergosterol synthesis cannot occur which causes a significant low concentration of ergosterol in the fungal cell. Ergosterol is essential in maintaining membrane integrity in fungi. Without ergosterol, the fungus cell cannot synthesize membranes thereby increasing fluidity and preventing growth of new cells. This leads to cell lysis which causes it to collapse and die. Sertaconazole might also inhibit endogenous respiration, interact with membrane phospholipids, inhibit transformation of yeasts to mycelial forms, inhibit purine uptake, and impair triglyceride and/or phospholipid biosynthesis.

PW145241

Pw145241 View Pathway
drug action

Sertaconazole Drug Metabolism Action Pathway

Homo sapiens

PW176403

Pw176403 View Pathway
metabolic

Sertaconazole Predicted Metabolism Pathway

Homo sapiens
Metabolites of Sertaconazole are predicted with biotransformer.

PW145657

Pw145657 View Pathway
drug action

Sertindole Drug Metabolism Action Pathway

Homo sapiens