PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW000338View Pathway |
drug action
Torsemide Action PathwayHomo sapiens
Torsemide, also known as torasemide is a pharmacologically-active small molecule that belongs to the drug class of loop diuretics. It is commonly used to manage hypertension and edema in cases of congestive heart failure as it acts as a diuretic by blocking sodium transporters NKCC2 on the thick ascending limb of the Loop of Henle in the renal tissues. Specifically it acts on solute carrier family 12 member 1. This prevents the reuptake of sodium into the Loop of Henle which consequentially reduces the uptake of water and serves to both increase water loss and reduce blood pressure. Torsemide appears to reduce blood pressure beyond its action in reducing salt uptake in the Loop of Henle; it also seems to be involved in reducing vasoconstriction by blocking the action of angiotensin II.
|
Creator: WishartLab Created On: August 22, 2013 at 10:45 Last Updated: August 22, 2013 at 10:45 |
PW122253View Pathway |
TPN B biosynthesisBacteria
Terpenoids, also known as isoprenoids, are a large class of natural products consisting of isoprene (C5) units. There are two
biosynthetic pathways, the mevalonate pathway and the non-mevalonate pathway or the MEP/DOXP pathway, for the terpenoid building blocks: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). The action of prenyltransferases then generates higher-order building blocks: geranyl diphosphate (GPP), farsenyl diphosphate
(FPP), and geranylgeranyl diphosphate (GGPP), which are the precursors of monoterpenoids (C10), sesquiterpenoids (C15), and diterpenoids (C20), respectively. Condensation of these building blocks gives rise to the precursors of sterols (C30) and carotenoids (C40). The MEP/DOXP pathway is absent in higher animals and fungi, but in green plants, the MEP/DOXP and mevalonate pathways co-exist in separate cellular compartments. The MEP/DOXP pathway, operating in the plastids, is responsible for the formation of essential oil monoterpenes and linalyl acetate, some sesquiterpenes, diterpenes, and carotenoids and phytol. However, the mevalonate pathway is absent in this organism.
|
Creator: Guest: Anonymous Created On: October 15, 2018 at 22:09 Last Updated: October 15, 2018 at 22:09 |
PW112895View Pathway |
signaling
TPO Signaling PathwayHomo sapiens
Thrombopoietin (TPO) is the cytokine that is chiefly responsible for megakaryocyte production but increasingly attention has turned to its role in maintaining hematopoietic stem cells (HSCs). HSCs are required to initiate the production of all mature hematopoietic cells, but this differentiation needs to be balanced against self-renewal and quiescence to maintain the stem cell pool throughout life. TPO has been shown to support HSC quiescence during adult hematopoiesis, with the loss of TPO signaling associated with bone marrow failure and thrombocytopenia.
The binding of TPO to its receptor, c-Mpl, promotes the phosphorylation of cytoplasmic signaling proteins and activation of a number of cascades that control cellular proliferation, megakaryocyte development, and survival. Suppressors of cytokine signaling (SOCS), phosphatases, and other proteins, such as focal adhesion kinase and members of the Src family kinases can suppress TPO signaling.
|
Creator: Aidin Foroutannaddafi Created On: September 04, 2018 at 15:39 Last Updated: September 04, 2018 at 15:39 |
PW128216View Pathway |
drug action
Trabectedin Action PathwayHomo sapiens
Trabectedin is an antineoplastic from the alkylating agent drug class. It is derived from a marine-derived antitumor molecule discovered in the Caribbean tunicate Ecteinascidia turbinata. This drug is indicated in the treatment of advanced soft tissue sarcoma (liposarcoma or leiomyosarcoma) in Europe, Russia, and South Korea. It is also approved as an orphan drug by the FDA for the treatment of soft tissue sarcomas and ovarian cancer. Trabectedin binds covalently to the DNA minor groove. This molecule binds and alkylates guanine bases to the N2 position with its two rings in its structure, causing the equivalent of a functional interstrand crosslink. The third ring protrudes from the DNA strand which lets it interact with nearby nuclear proteins. It affects various transcription factors involved in cell proliferation via the transcription-coupled nucleotide excision repair system (NER). With this mechanism of action, trabectedin blocks the cell cycle at the G2 phase, resulting in the apoptosis of the cancerous cell, This drug is administered as an intravenous injection.
|
Creator: Daphnee Created On: August 03, 2023 at 14:30 Last Updated: August 03, 2023 at 14:30 |
PW145629View Pathway |
drug action
Trabectedin Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 16:15 Last Updated: October 07, 2023 at 16:15 |
PW000648View Pathway |
drug action
Tramadol Action Action PathwayHomo sapiens
Tramadol is an analgesic drug consisting of two enantiomer forms (+)-Tramadol and (-)-Tramadol. Both contribute to pain relief by inhibiting pain transmission in the spinal cord via different mechanisms. (+)-Tramadol is a selective agonist of the mu receptor (OP3) inhibiting serotonin reuptake, while (-)-Tramadol inhibits norepinephrine reuptake in the central nervous system. Although tramadol is structurally related to codeine and morphine, it’s affinity for the mu receptor compared to other opioids is significantly less. Therefore tramadol is used when treatment with strong opioids is not necessary since it’s pharmacodynamic and pharmacokinetic properties suggest the low likelihood of patients becoming dependent.
|
Creator: WishartLab Created On: April 21, 2014 at 05:11 Last Updated: April 21, 2014 at 05:11 |
PW144324View Pathway |
drug action
Tramadol Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 13:24 Last Updated: October 07, 2023 at 13:24 |
PW000613View Pathway |
Tramadol Metabolism PathwayHomo sapiens
Tramadol (also named Ultram) is a class of opioid pain medication that used for treating pain. Metabolism of tramadol mainly happened in liver cell. The N-demethylation of tramadol is catalyzed by the cytochrome CYP3A4 and CYP2B6 to form N-Desmethyltramadol, which further metabolized to N,N-Didesmethyltramadol through CYP3A4 and CYP2B6 and to N,O-Didesmethyltramadol through CYP2D6. The O-demethylation of tramadol is catalyzed by the cytochrome CYP2D6 to form O-Desmethyltramadol, which further metabolized to O-Desmethyltramadol glucuronide through UDP-glucuronosyltransferase 2B7 and UDP-glucuronosyltransferase 1-8. O-Desmethyltramadol can also be metabolized to N,O-Didesmethyltramadol through CYP2D6.
|
Creator: WishartLab Created On: September 11, 2013 at 22:33 Last Updated: September 11, 2013 at 22:33 |
PW126901View Pathway |
Tramadol Metabolism Pathway (New)Homo sapiens
|
Creator: Karxena Harford Created On: May 05, 2022 at 01:10 Last Updated: May 05, 2022 at 01:10 |
PW128072View Pathway |
drug action
Tramadol NMDA Antagonist Action PathwayHomo sapiens
Tramadol is a centrally acting synthetic opioid agonist and SNRI used for the management of moderate to severe pain in adults. It is structurally related to codeine and morphine. It main mechanism of action is on mu-opioid receptors and SNRIs, but it also known to effect pain modulators such as adrenoreceptors, neurokinin receptors, voltage-gated sodium channels, capsaicin receptors, muscarinic receptors (M1 and M3), NMDA receptors, adenosine receptors, and nicotinic acetylcholine receptors.
Tramadol diffuses across the blood-brain barrier after being absorbed by the intestine. It then inhibits NMDA receptors in the brain. This prevents glutamate from binding to NMDA receptors, which prevents calcium from entering the postsynaptic neuron which leads to hyperpolarization.
|
Creator: Ray Kruger Created On: July 13, 2023 at 09:56 Last Updated: July 13, 2023 at 09:56 |