Loader

Pathways

PathWhiz ID Pathway Meta Data

PW007585

Pw007585 View Pathway
metabolic

Triacylglycerol Metabolism TG(10:0/12:0/16:0)

Saccharomyces cerevisiae
A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. The biosynthesis of triacylglycerol is localized to the endoplasmic reticulum membrane and starts with glycerol 3-phosphate reacting with acyl-CoA through a glycerol-3-phosphate O-acyltransferase resulting in the release of lysophosphatidic acid (LPA). This, in turn, reacts with an acyl-CoA through a lipase complex resulting in the release of CoA and phosphatidic acid. Phosphatidic acid reacts with water through a phosphatidic acid phosphohydrolase 1 resulting in the release of a phosphate and a diacylglycerol. This reaction can be reversed through a CTP-dependent diacylglycerol kinase. The diacylglycerol reacts in the endoplasmic reticulum with an acyl-CoA through a diacylglycerol O-acyltransferase resulting in the release of coenzyme A and a triacylglycerol. Triacylglycerol metabolism begins with a reaction with water through lipase resulting in the release of a fatty acid, hydrogen ion, and a diacylglycerol. Diacylglycerol then reacts with a lipase 3 resulting in the release of a fatty acid and a monoacylglycerol. Monoacylglycerol reacts with monoglyceride lipase resulting in the release of a fatty acid in glycerol.

PW007589

Pw007589 View Pathway
metabolic

Triacylglycerol Metabolism TG(10:0/12:0/16:1(9Z))

Saccharomyces cerevisiae
A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. The biosynthesis of triacylglycerol is localized to the endoplasmic reticulum membrane and starts with glycerol 3-phosphate reacting with acyl-CoA through a glycerol-3-phosphate O-acyltransferase resulting in the release of lysophosphatidic acid (LPA). This, in turn, reacts with an acyl-CoA through a lipase complex resulting in the release of CoA and phosphatidic acid. Phosphatidic acid reacts with water through a phosphatidic acid phosphohydrolase 1 resulting in the release of a phosphate and a diacylglycerol. This reaction can be reversed through a CTP-dependent diacylglycerol kinase. The diacylglycerol reacts in the endoplasmic reticulum with an acyl-CoA through a diacylglycerol O-acyltransferase resulting in the release of coenzyme A and a triacylglycerol. Triacylglycerol metabolism begins with a reaction with water through lipase resulting in the release of a fatty acid, hydrogen ion, and a diacylglycerol. Diacylglycerol then reacts with a lipase 3 resulting in the release of a fatty acid and a monoacylglycerol. Monoacylglycerol reacts with monoglyceride lipase resulting in the release of a fatty acid in glycerol.

PW007593

Pw007593 View Pathway
metabolic

Triacylglycerol Metabolism TG(10:0/12:0/18:0)

Saccharomyces cerevisiae
A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. The biosynthesis of triacylglycerol is localized to the endoplasmic reticulum membrane and starts with glycerol 3-phosphate reacting with acyl-CoA through a glycerol-3-phosphate O-acyltransferase resulting in the release of lysophosphatidic acid (LPA). This, in turn, reacts with an acyl-CoA through a lipase complex resulting in the release of CoA and phosphatidic acid. Phosphatidic acid reacts with water through a phosphatidic acid phosphohydrolase 1 resulting in the release of a phosphate and a diacylglycerol. This reaction can be reversed through a CTP-dependent diacylglycerol kinase. The diacylglycerol reacts in the endoplasmic reticulum with an acyl-CoA through a diacylglycerol O-acyltransferase resulting in the release of coenzyme A and a triacylglycerol. Triacylglycerol metabolism begins with a reaction with water through lipase resulting in the release of a fatty acid, hydrogen ion, and a diacylglycerol. Diacylglycerol then reacts with a lipase 3 resulting in the release of a fatty acid and a monoacylglycerol. Monoacylglycerol reacts with monoglyceride lipase resulting in the release of a fatty acid in glycerol.

PW007599

Pw007599 View Pathway
metabolic

Triacylglycerol Metabolism TG(10:0/12:0/18:1(9Z))

Saccharomyces cerevisiae
A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. The biosynthesis of triacylglycerol is localized to the endoplasmic reticulum membrane and starts with glycerol 3-phosphate reacting with acyl-CoA through a glycerol-3-phosphate O-acyltransferase resulting in the release of lysophosphatidic acid (LPA). This, in turn, reacts with an acyl-CoA through a lipase complex resulting in the release of CoA and phosphatidic acid. Phosphatidic acid reacts with water through a phosphatidic acid phosphohydrolase 1 resulting in the release of a phosphate and a diacylglycerol. This reaction can be reversed through a CTP-dependent diacylglycerol kinase. The diacylglycerol reacts in the endoplasmic reticulum with an acyl-CoA through a diacylglycerol O-acyltransferase resulting in the release of coenzyme A and a triacylglycerol. Triacylglycerol metabolism begins with a reaction with water through lipase resulting in the release of a fatty acid, hydrogen ion, and a diacylglycerol. Diacylglycerol then reacts with a lipase 3 resulting in the release of a fatty acid and a monoacylglycerol. Monoacylglycerol reacts with monoglyceride lipase resulting in the release of a fatty acid in glycerol.

PW007609

Pw007609 View Pathway
metabolic

Triacylglycerol Metabolism TG(10:0/12:0/20:0)

Saccharomyces cerevisiae
A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. The biosynthesis of triacylglycerol is localized to the endoplasmic reticulum membrane and starts with glycerol 3-phosphate reacting with acyl-CoA through a glycerol-3-phosphate O-acyltransferase resulting in the release of lysophosphatidic acid (LPA). This, in turn, reacts with an acyl-CoA through a lipase complex resulting in the release of CoA and phosphatidic acid. Phosphatidic acid reacts with water through a phosphatidic acid phosphohydrolase 1 resulting in the release of a phosphate and a diacylglycerol. This reaction can be reversed through a CTP-dependent diacylglycerol kinase. The diacylglycerol reacts in the endoplasmic reticulum with an acyl-CoA through a diacylglycerol O-acyltransferase resulting in the release of coenzyme A and a triacylglycerol. Triacylglycerol metabolism begins with a reaction with water through lipase resulting in the release of a fatty acid, hydrogen ion, and a diacylglycerol. Diacylglycerol then reacts with a lipase 3 resulting in the release of a fatty acid and a monoacylglycerol. Monoacylglycerol reacts with monoglyceride lipase resulting in the release of a fatty acid in glycerol.

PW007617

Pw007617 View Pathway
metabolic

Triacylglycerol Metabolism TG(10:0/12:0/20:1(13Z))

Saccharomyces cerevisiae
A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. The biosynthesis of triacylglycerol is localized to the endoplasmic reticulum membrane and starts with glycerol 3-phosphate reacting with acyl-CoA through a glycerol-3-phosphate O-acyltransferase resulting in the release of lysophosphatidic acid (LPA). This, in turn, reacts with an acyl-CoA through a lipase complex resulting in the release of CoA and phosphatidic acid. Phosphatidic acid reacts with water through a phosphatidic acid phosphohydrolase 1 resulting in the release of a phosphate and a diacylglycerol. This reaction can be reversed through a CTP-dependent diacylglycerol kinase. The diacylglycerol reacts in the endoplasmic reticulum with an acyl-CoA through a diacylglycerol O-acyltransferase resulting in the release of coenzyme A and a triacylglycerol. Triacylglycerol metabolism begins with a reaction with water through lipase resulting in the release of a fatty acid, hydrogen ion, and a diacylglycerol. Diacylglycerol then reacts with a lipase 3 resulting in the release of a fatty acid and a monoacylglycerol. Monoacylglycerol reacts with monoglyceride lipase resulting in the release of a fatty acid in glycerol.

PW007647

Pw007647 View Pathway
metabolic

Triacylglycerol Metabolism TG(10:0/12:0/22:0)

Saccharomyces cerevisiae
A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. The biosynthesis of triacylglycerol is localized to the endoplasmic reticulum membrane and starts with glycerol 3-phosphate reacting with acyl-CoA through a glycerol-3-phosphate O-acyltransferase resulting in the release of lysophosphatidic acid (LPA). This, in turn, reacts with an acyl-CoA through a lipase complex resulting in the release of CoA and phosphatidic acid. Phosphatidic acid reacts with water through a phosphatidic acid phosphohydrolase 1 resulting in the release of a phosphate and a diacylglycerol. This reaction can be reversed through a CTP-dependent diacylglycerol kinase. The diacylglycerol reacts in the endoplasmic reticulum with an acyl-CoA through a diacylglycerol O-acyltransferase resulting in the release of coenzyme A and a triacylglycerol. Triacylglycerol metabolism begins with a reaction with water through lipase resulting in the release of a fatty acid, hydrogen ion, and a diacylglycerol. Diacylglycerol then reacts with a lipase 3 resulting in the release of a fatty acid and a monoacylglycerol. Monoacylglycerol reacts with monoglyceride lipase resulting in the release of a fatty acid in glycerol.

PW007656

Pw007656 View Pathway
metabolic

Triacylglycerol Metabolism TG(10:0/12:0/22:1(13Z))

Saccharomyces cerevisiae
A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. The biosynthesis of triacylglycerol is localized to the endoplasmic reticulum membrane and starts with glycerol 3-phosphate reacting with acyl-CoA through a glycerol-3-phosphate O-acyltransferase resulting in the release of lysophosphatidic acid (LPA). This, in turn, reacts with an acyl-CoA through a lipase complex resulting in the release of CoA and phosphatidic acid. Phosphatidic acid reacts with water through a phosphatidic acid phosphohydrolase 1 resulting in the release of a phosphate and a diacylglycerol. This reaction can be reversed through a CTP-dependent diacylglycerol kinase. The diacylglycerol reacts in the endoplasmic reticulum with an acyl-CoA through a diacylglycerol O-acyltransferase resulting in the release of coenzyme A and a triacylglycerol. Triacylglycerol metabolism begins with a reaction with water through lipase resulting in the release of a fatty acid, hydrogen ion, and a diacylglycerol. Diacylglycerol then reacts with a lipase 3 resulting in the release of a fatty acid and a monoacylglycerol. Monoacylglycerol reacts with monoglyceride lipase resulting in the release of a fatty acid in glycerol.

PW007683

Pw007683 View Pathway
metabolic

Triacylglycerol Metabolism TG(10:0/12:0/23:1(9Z))

Saccharomyces cerevisiae
A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. The biosynthesis of triacylglycerol is localized to the endoplasmic reticulum membrane and starts with glycerol 3-phosphate reacting with acyl-CoA through a glycerol-3-phosphate O-acyltransferase resulting in the release of lysophosphatidic acid (LPA). This, in turn, reacts with an acyl-CoA through a lipase complex resulting in the release of CoA and phosphatidic acid. Phosphatidic acid reacts with water through a phosphatidic acid phosphohydrolase 1 resulting in the release of a phosphate and a diacylglycerol. This reaction can be reversed through a CTP-dependent diacylglycerol kinase. The diacylglycerol reacts in the endoplasmic reticulum with an acyl-CoA through a diacylglycerol O-acyltransferase resulting in the release of coenzyme A and a triacylglycerol. Triacylglycerol metabolism begins with a reaction with water through lipase resulting in the release of a fatty acid, hydrogen ion, and a diacylglycerol. Diacylglycerol then reacts with a lipase 3 resulting in the release of a fatty acid and a monoacylglycerol. Monoacylglycerol reacts with monoglyceride lipase resulting in the release of a fatty acid in glycerol.

PW007701

Pw007701 View Pathway
metabolic

Triacylglycerol Metabolism TG(10:0/12:0/24:0)

Saccharomyces cerevisiae
A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. The biosynthesis of triacylglycerol is localized to the endoplasmic reticulum membrane and starts with glycerol 3-phosphate reacting with acyl-CoA through a glycerol-3-phosphate O-acyltransferase resulting in the release of lysophosphatidic acid (LPA). This, in turn, reacts with an acyl-CoA through a lipase complex resulting in the release of CoA and phosphatidic acid. Phosphatidic acid reacts with water through a phosphatidic acid phosphohydrolase 1 resulting in the release of a phosphate and a diacylglycerol. This reaction can be reversed through a CTP-dependent diacylglycerol kinase. The diacylglycerol reacts in the endoplasmic reticulum with an acyl-CoA through a diacylglycerol O-acyltransferase resulting in the release of coenzyme A and a triacylglycerol. Triacylglycerol metabolism begins with a reaction with water through lipase resulting in the release of a fatty acid, hydrogen ion, and a diacylglycerol. Diacylglycerol then reacts with a lipase 3 resulting in the release of a fatty acid and a monoacylglycerol. Monoacylglycerol reacts with monoglyceride lipase resulting in the release of a fatty acid in glycerol.