
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW385067 |
Biosynthesis of Siderophore Group Nonribosomal PeptidesMorganella morganii subsp. morganii KT
2,3-Dihydroxybenzoate is created from chorismate through isochorismate and 2,3-dihydroxy-2,3-dihydrobenzoate. The biosynthesis of 2,3-dihydroxybenzoate starts from chorismate being converted into isochorismate through isochorismate synthase entC. The N-terminal isochorismate lyase domain of EntB adds hydrogen to the pyruvate group of isochorismate to create 2,3-dihydro-2,3-dihydroxybenzoate. this latter compound to 2,3-dihydroxybenzoate is then converted by the catalyzation of EntA dehydrogenase. This compound then interacts with L-serine and ATP through the enterobactin synthase protein complex resulting in the production of enterobactin. Enterobactin is exported into the periplasmic space through the enterobactin exporter entS. Enterobactin is then exported into the environment through the outer membrane protein TolC. In the environment, enterobactin reacts with iron to produce ferric enterobactin. It is then imported into the periplasmic space through a ferric enterobactin outer membrane transport complex. Ferric enterobactin continues it's journey and enters the cytoplasm via a ferric enterobactin ABC transporter. Once inside the cytoplasm, ferric enterobactin spontaneously releases the iron ion from the enterobactin. Alternatively, it can react with water through an enterochelin esterase resulting in the release of 2,3-dihydroxybenzoylserine, Fe3+, and hydrogen ions.
|
Creator: Julia Wakoli Created On: December 10, 2024 at 08:16 Last Updated: December 10, 2024 at 08:16 |
PW385073 |
Biosynthesis of Siderophore Group Nonribosomal PeptidesProvidencia rustigianii DSM 4541
2,3-Dihydroxybenzoate is created from chorismate through isochorismate and 2,3-dihydroxy-2,3-dihydrobenzoate. The biosynthesis of 2,3-dihydroxybenzoate starts from chorismate being converted into isochorismate through isochorismate synthase entC. The N-terminal isochorismate lyase domain of EntB adds hydrogen to the pyruvate group of isochorismate to create 2,3-dihydro-2,3-dihydroxybenzoate. this latter compound to 2,3-dihydroxybenzoate is then converted by the catalyzation of EntA dehydrogenase. This compound then interacts with L-serine and ATP through the enterobactin synthase protein complex resulting in the production of enterobactin. Enterobactin is exported into the periplasmic space through the enterobactin exporter entS. Enterobactin is then exported into the environment through the outer membrane protein TolC. In the environment, enterobactin reacts with iron to produce ferric enterobactin. It is then imported into the periplasmic space through a ferric enterobactin outer membrane transport complex. Ferric enterobactin continues it's journey and enters the cytoplasm via a ferric enterobactin ABC transporter. Once inside the cytoplasm, ferric enterobactin spontaneously releases the iron ion from the enterobactin. Alternatively, it can react with water through an enterochelin esterase resulting in the release of 2,3-dihydroxybenzoylserine, Fe3+, and hydrogen ions.
|
Creator: Julia Wakoli Created On: December 10, 2024 at 08:21 Last Updated: December 10, 2024 at 08:21 |
PW386224 |
Biosynthesis of Siderophore Group Nonribosomal PeptidesEscherichia coli IAI1
2,3-Dihydroxybenzoate is created from chorismate through isochorismate and 2,3-dihydroxy-2,3-dihydrobenzoate. The biosynthesis of 2,3-dihydroxybenzoate starts from chorismate being converted into isochorismate through isochorismate synthase entC. The N-terminal isochorismate lyase domain of EntB adds hydrogen to the pyruvate group of isochorismate to create 2,3-dihydro-2,3-dihydroxybenzoate. this latter compound to 2,3-dihydroxybenzoate is then converted by the catalyzation of EntA dehydrogenase. This compound then interacts with L-serine and ATP through the enterobactin synthase protein complex resulting in the production of enterobactin. Enterobactin is exported into the periplasmic space through the enterobactin exporter entS. Enterobactin is then exported into the environment through the outer membrane protein TolC. In the environment, enterobactin reacts with iron to produce ferric enterobactin. It is then imported into the periplasmic space through a ferric enterobactin outer membrane transport complex. Ferric enterobactin continues it's journey and enters the cytoplasm via a ferric enterobactin ABC transporter. Once inside the cytoplasm, ferric enterobactin spontaneously releases the iron ion from the enterobactin. Alternatively, it can react with water through an enterochelin esterase resulting in the release of 2,3-dihydroxybenzoylserine, Fe3+, and hydrogen ions.
|
Creator: Julia Wakoli Created On: December 10, 2024 at 18:04 Last Updated: December 10, 2024 at 18:04 |
PW384975 |
Biosynthesis of Siderophore Group Nonribosomal PeptidesBurkholderia cepacia GG4
2,3-Dihydroxybenzoate is created from chorismate through isochorismate and 2,3-dihydroxy-2,3-dihydrobenzoate. The biosynthesis of 2,3-dihydroxybenzoate starts from chorismate being converted into isochorismate through isochorismate synthase entC. The N-terminal isochorismate lyase domain of EntB adds hydrogen to the pyruvate group of isochorismate to create 2,3-dihydro-2,3-dihydroxybenzoate. this latter compound to 2,3-dihydroxybenzoate is then converted by the catalyzation of EntA dehydrogenase. This compound then interacts with L-serine and ATP through the enterobactin synthase protein complex resulting in the production of enterobactin. Enterobactin is exported into the periplasmic space through the enterobactin exporter entS. Enterobactin is then exported into the environment through the outer membrane protein TolC. In the environment, enterobactin reacts with iron to produce ferric enterobactin. It is then imported into the periplasmic space through a ferric enterobactin outer membrane transport complex. Ferric enterobactin continues it's journey and enters the cytoplasm via a ferric enterobactin ABC transporter. Once inside the cytoplasm, ferric enterobactin spontaneously releases the iron ion from the enterobactin. Alternatively, it can react with water through an enterochelin esterase resulting in the release of 2,3-dihydroxybenzoylserine, Fe3+, and hydrogen ions.
|
Creator: Julia Wakoli Created On: December 10, 2024 at 06:54 Last Updated: December 10, 2024 at 06:54 |
PW384987 |
Biosynthesis of Siderophore Group Nonribosomal PeptidesNeisseria cinerea ATCC 14685
2,3-Dihydroxybenzoate is created from chorismate through isochorismate and 2,3-dihydroxy-2,3-dihydrobenzoate. The biosynthesis of 2,3-dihydroxybenzoate starts from chorismate being converted into isochorismate through isochorismate synthase entC. The N-terminal isochorismate lyase domain of EntB adds hydrogen to the pyruvate group of isochorismate to create 2,3-dihydro-2,3-dihydroxybenzoate. this latter compound to 2,3-dihydroxybenzoate is then converted by the catalyzation of EntA dehydrogenase. This compound then interacts with L-serine and ATP through the enterobactin synthase protein complex resulting in the production of enterobactin. Enterobactin is exported into the periplasmic space through the enterobactin exporter entS. Enterobactin is then exported into the environment through the outer membrane protein TolC. In the environment, enterobactin reacts with iron to produce ferric enterobactin. It is then imported into the periplasmic space through a ferric enterobactin outer membrane transport complex. Ferric enterobactin continues it's journey and enters the cytoplasm via a ferric enterobactin ABC transporter. Once inside the cytoplasm, ferric enterobactin spontaneously releases the iron ion from the enterobactin. Alternatively, it can react with water through an enterochelin esterase resulting in the release of 2,3-dihydroxybenzoylserine, Fe3+, and hydrogen ions.
|
Creator: Julia Wakoli Created On: December 10, 2024 at 07:05 Last Updated: December 10, 2024 at 07:05 |
PW384898 |
Biosynthesis of Siderophore Group Nonribosomal PeptidesPrevotella intermedia ATCC 25611 = DSM 20706
2,3-Dihydroxybenzoate is created from chorismate through isochorismate and 2,3-dihydroxy-2,3-dihydrobenzoate. The biosynthesis of 2,3-dihydroxybenzoate starts from chorismate being converted into isochorismate through isochorismate synthase entC. The N-terminal isochorismate lyase domain of EntB adds hydrogen to the pyruvate group of isochorismate to create 2,3-dihydro-2,3-dihydroxybenzoate. this latter compound to 2,3-dihydroxybenzoate is then converted by the catalyzation of EntA dehydrogenase. This compound then interacts with L-serine and ATP through the enterobactin synthase protein complex resulting in the production of enterobactin. Enterobactin is exported into the periplasmic space through the enterobactin exporter entS. Enterobactin is then exported into the environment through the outer membrane protein TolC. In the environment, enterobactin reacts with iron to produce ferric enterobactin. It is then imported into the periplasmic space through a ferric enterobactin outer membrane transport complex. Ferric enterobactin continues it's journey and enters the cytoplasm via a ferric enterobactin ABC transporter. Once inside the cytoplasm, ferric enterobactin spontaneously releases the iron ion from the enterobactin. Alternatively, it can react with water through an enterochelin esterase resulting in the release of 2,3-dihydroxybenzoylserine, Fe3+, and hydrogen ions.
|
Creator: Julia Wakoli Created On: December 10, 2024 at 05:47 Last Updated: December 10, 2024 at 05:47 |
PW384981 |
Biosynthesis of Siderophore Group Nonribosomal PeptidesSutterella parvirubra YIT 11816
2,3-Dihydroxybenzoate is created from chorismate through isochorismate and 2,3-dihydroxy-2,3-dihydrobenzoate. The biosynthesis of 2,3-dihydroxybenzoate starts from chorismate being converted into isochorismate through isochorismate synthase entC. The N-terminal isochorismate lyase domain of EntB adds hydrogen to the pyruvate group of isochorismate to create 2,3-dihydro-2,3-dihydroxybenzoate. this latter compound to 2,3-dihydroxybenzoate is then converted by the catalyzation of EntA dehydrogenase. This compound then interacts with L-serine and ATP through the enterobactin synthase protein complex resulting in the production of enterobactin. Enterobactin is exported into the periplasmic space through the enterobactin exporter entS. Enterobactin is then exported into the environment through the outer membrane protein TolC. In the environment, enterobactin reacts with iron to produce ferric enterobactin. It is then imported into the periplasmic space through a ferric enterobactin outer membrane transport complex. Ferric enterobactin continues it's journey and enters the cytoplasm via a ferric enterobactin ABC transporter. Once inside the cytoplasm, ferric enterobactin spontaneously releases the iron ion from the enterobactin. Alternatively, it can react with water through an enterochelin esterase resulting in the release of 2,3-dihydroxybenzoylserine, Fe3+, and hydrogen ions.
|
Creator: Julia Wakoli Created On: December 10, 2024 at 06:59 Last Updated: December 10, 2024 at 06:59 |
PW385103 |
Biosynthesis of Siderophore Group Nonribosomal PeptidesGrimontia hollisae CIP 101886
2,3-Dihydroxybenzoate is created from chorismate through isochorismate and 2,3-dihydroxy-2,3-dihydrobenzoate. The biosynthesis of 2,3-dihydroxybenzoate starts from chorismate being converted into isochorismate through isochorismate synthase entC. The N-terminal isochorismate lyase domain of EntB adds hydrogen to the pyruvate group of isochorismate to create 2,3-dihydro-2,3-dihydroxybenzoate. this latter compound to 2,3-dihydroxybenzoate is then converted by the catalyzation of EntA dehydrogenase. This compound then interacts with L-serine and ATP through the enterobactin synthase protein complex resulting in the production of enterobactin. Enterobactin is exported into the periplasmic space through the enterobactin exporter entS. Enterobactin is then exported into the environment through the outer membrane protein TolC. In the environment, enterobactin reacts with iron to produce ferric enterobactin. It is then imported into the periplasmic space through a ferric enterobactin outer membrane transport complex. Ferric enterobactin continues it's journey and enters the cytoplasm via a ferric enterobactin ABC transporter. Once inside the cytoplasm, ferric enterobactin spontaneously releases the iron ion from the enterobactin. Alternatively, it can react with water through an enterochelin esterase resulting in the release of 2,3-dihydroxybenzoylserine, Fe3+, and hydrogen ions.
|
Creator: Julia Wakoli Created On: December 10, 2024 at 08:48 Last Updated: December 10, 2024 at 08:48 |
PW385151 |
Biosynthesis of Siderophore Group Nonribosomal PeptidesVeillonella dispar ATCC 17748
2,3-Dihydroxybenzoate is created from chorismate through isochorismate and 2,3-dihydroxy-2,3-dihydrobenzoate. The biosynthesis of 2,3-dihydroxybenzoate starts from chorismate being converted into isochorismate through isochorismate synthase entC. The N-terminal isochorismate lyase domain of EntB adds hydrogen to the pyruvate group of isochorismate to create 2,3-dihydro-2,3-dihydroxybenzoate. this latter compound to 2,3-dihydroxybenzoate is then converted by the catalyzation of EntA dehydrogenase. This compound then interacts with L-serine and ATP through the enterobactin synthase protein complex resulting in the production of enterobactin. Enterobactin is exported into the periplasmic space through the enterobactin exporter entS. Enterobactin is then exported into the environment through the outer membrane protein TolC. In the environment, enterobactin reacts with iron to produce ferric enterobactin. It is then imported into the periplasmic space through a ferric enterobactin outer membrane transport complex. Ferric enterobactin continues it's journey and enters the cytoplasm via a ferric enterobactin ABC transporter. Once inside the cytoplasm, ferric enterobactin spontaneously releases the iron ion from the enterobactin. Alternatively, it can react with water through an enterochelin esterase resulting in the release of 2,3-dihydroxybenzoylserine, Fe3+, and hydrogen ions.
|
Creator: Julia Wakoli Created On: December 10, 2024 at 09:31 Last Updated: December 10, 2024 at 09:31 |
PW384507 |
Biosynthesis of Siderophore Group Nonribosomal PeptidesEscherichia coli (strain K12)
2,3-Dihydroxybenzoate is created from chorismate through isochorismate and 2,3-dihydroxy-2,3-dihydrobenzoate. The biosynthesis of 2,3-dihydroxybenzoate starts from chorismate being converted into isochorismate through isochorismate synthase entC. The N-terminal isochorismate lyase domain of EntB adds hydrogen to the pyruvate group of isochorismate to create 2,3-dihydro-2,3-dihydroxybenzoate. this latter compound to 2,3-dihydroxybenzoate is then converted by the catalyzation of EntA dehydrogenase. This compound then interacts with L-serine and ATP through the enterobactin synthase protein complex resulting in the production of enterobactin. Enterobactin is exported into the periplasmic space through the enterobactin exporter entS. Enterobactin is then exported into the environment through the outer membrane protein TolC. In the environment, enterobactin reacts with iron to produce ferric enterobactin. It is then imported into the periplasmic space through a ferric enterobactin outer membrane transport complex. Ferric enterobactin continues it's journey and enters the cytoplasm via a ferric enterobactin ABC transporter. Once inside the cytoplasm, ferric enterobactin spontaneously releases the iron ion from the enterobactin. Alternatively, it can react with water through an enterochelin esterase resulting in the release of 2,3-dihydroxybenzoylserine, Fe3+, and hydrogen ions.
|
Creator: Julia Wakoli Created On: December 09, 2024 at 23:40 Last Updated: December 09, 2024 at 23:40 |