
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW685749 |
PreQ0 MetabolismAlloprevotella tannerae ATCC 51259
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP.
GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine.
The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine
|
Creator: Julia Wakoli Created On: January 28, 2025 at 20:49 Last Updated: January 28, 2025 at 20:49 |
PW484615 |
PreQ0 MetabolismNeisseria cinerea ATCC 14685
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP.
GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine.
The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine
|
Creator: Julia Wakoli Created On: January 29, 2025 at 09:36 Last Updated: January 29, 2025 at 09:36 |
PW485694 |
PreQ0 MetabolismTrabulsiella guamensis ATCC 49490
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP.
GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine.
The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine
|
Creator: Julia Wakoli Created On: January 29, 2025 at 16:40 Last Updated: January 29, 2025 at 16:40 |
PW485788 |
PreQ0 MetabolismHafnia alvei ATCC 51873
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP.
GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine.
The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine
|
Creator: Julia Wakoli Created On: January 29, 2025 at 17:19 Last Updated: January 29, 2025 at 17:19 |
PW485783 |
PreQ0 MetabolismTatumella ptyseos ATCC 33301
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP.
GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine.
The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine
|
Creator: Julia Wakoli Created On: January 29, 2025 at 17:17 Last Updated: January 29, 2025 at 17:17 |
PW479318 |
PreQ0 MetabolismEscherichia coli (strain SE11)
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP.
GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine.
The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine
|
Creator: Julia Wakoli Created On: January 27, 2025 at 10:21 Last Updated: January 27, 2025 at 10:21 |
PW479635 |
PreQ0 MetabolismAlistipes finegoldii DSM 17242
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP.
GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine.
The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine
|
Creator: Julia Wakoli Created On: January 27, 2025 at 13:59 Last Updated: January 27, 2025 at 13:59 |
PW481933 |
PreQ0 MetabolismBacteroides cellulosilyticus DSM 14838
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP.
GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine.
The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine
|
Creator: Julia Wakoli Created On: January 28, 2025 at 13:46 Last Updated: January 28, 2025 at 13:46 |
PW481832 |
PreQ0 MetabolismYersinia enterocolitica subsp. enterocolitica 8081
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP.
GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine.
The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine
|
Creator: Julia Wakoli Created On: January 28, 2025 at 13:05 Last Updated: January 28, 2025 at 13:05 |
PW486743 |
PreQ0 Metabolism[Clostridium] citroniae WAL-17108
PreQ0 or 7-cyano-7-carbaguanine is biosynthesized by degrading GTP.
GTP first interacts with water through a GTP cyclohydrolase resulting in the release of a formate, a hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound then interacts with water through a 6-carboxy-5,6,7,8-tetrahydropterin synthase resulting in a acetaldehyde, triphosphate, 2 hydrogen ion and 6-carboxy-5,6,7,8-tetrahydropterin. The latter compound then reacts spontaneously with a hydrogen ion resulting in the release of a ammonium molecule and a 7-carboxy-7-deazaguanine. This compound then interacts with ATP and ammonium through 7-cyano-7-deazaguanine synthase resulting in the release of water, phosphate, ADP, hydrogen ion and a 7-cyano-7-carbaguanine.
The degradation of 7-cyano-7-deazaguanine can lead to produce a preQ1 or a queuine by reacting with 3 hydrogen ions and 2 NADPH through a 7-cyano-7-deazaguanine reductase. PreQ1 then interacts with a guanine 34 in tRNA through a tRNA-guanine transglycosylase resulting in a release of a guanine and a 7-aminomethyl-7-deazaguanosine 34 in tRNA. This nucleic acid then interacts with SAM through a S-adenosylmethionine tRNA ribosyltransferase-isomerase resulting in a release of a hydrogen ion, L-methionine, adenine and an epoxyqueuosine
|
Creator: Julia Wakoli Created On: January 29, 2025 at 23:32 Last Updated: January 29, 2025 at 23:32 |