Loader

Pathways

PathWhiz ID Pathway Meta Data

PW401324

Pw401324 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Kingella oralis ATCC 51147
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW401305

Pw401305 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Sutterella parvirubra YIT 11816
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW400681

Pw400681 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Bacteroides graminisolvens DSM 19988 = JCM 15093
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW401482

Pw401482 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Citrobacter amalonaticus Y19
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW401848

Pw401848 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Veillonella dispar ATCC 17748
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW401812

Pw401812 View Pathway
metabolic

Serine Biosynthesis and Metabolism

[Bacteroides] pectinophilus ATCC 43243
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW401824

Pw401824 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Selenomonas ruminantium AC2024
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW401278

Pw401278 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Bordetella hinzii OH87 BAL007II
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW401247

Pw401247 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Bradyrhizobium japonicum USDA 6
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.

PW401204

Pw401204 View Pathway
metabolic

Serine Biosynthesis and Metabolism

Fusobacterium nucleatum subsp. vincentii 3_1_36A2
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds. The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine. The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.