
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW393147 |
Ascorbate MetabolismBacteroides sp. 1_1_14
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions.
Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate.
L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate.
The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically.
Aerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway.
Anaerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway.
Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP.
Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.
|
Creator: Julia Wakoli Created On: December 14, 2024 at 03:21 Last Updated: December 14, 2024 at 03:21 |
PW392891 |
Ascorbate MetabolismBacteroides cellulosilyticus DSM 14838
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions.
Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate.
L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate.
The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically.
Aerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway.
Anaerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway.
Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP.
Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.
|
Creator: Julia Wakoli Created On: December 14, 2024 at 01:48 Last Updated: December 14, 2024 at 01:48 |
PW392947 |
Ascorbate MetabolismBacteroides graminisolvens DSM 19988 = JCM 15093
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions.
Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate.
L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate.
The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically.
Aerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway.
Anaerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway.
Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP.
Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.
|
Creator: Julia Wakoli Created On: December 14, 2024 at 02:12 Last Updated: December 14, 2024 at 02:12 |
PW393279 |
Ascorbate MetabolismBacteroides sp. 3_2_5
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions.
Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate.
L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate.
The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically.
Aerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway.
Anaerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway.
Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP.
Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.
|
Creator: Julia Wakoli Created On: December 14, 2024 at 04:06 Last Updated: December 14, 2024 at 04:06 |
PW393426 |
Ascorbate MetabolismBacteroides sp. D22
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions.
Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate.
L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate.
The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically.
Aerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway.
Anaerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway.
Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP.
Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.
|
Creator: Julia Wakoli Created On: December 14, 2024 at 04:55 Last Updated: December 14, 2024 at 04:55 |
PW394203 |
Ascorbate MetabolismMethyloversatilis universalis FAM5
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions.
Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate.
L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate.
The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically.
Aerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway.
Anaerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway.
Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP.
Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.
|
Creator: Julia Wakoli Created On: December 14, 2024 at 13:01 Last Updated: December 14, 2024 at 13:01 |
PW394227 |
Ascorbate MetabolismDesulfovibrio piger ATCC 29098
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions.
Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate.
L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate.
The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically.
Aerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway.
Anaerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway.
Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP.
Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.
|
Creator: Julia Wakoli Created On: December 14, 2024 at 13:24 Last Updated: December 14, 2024 at 13:24 |
PW394164 |
Ascorbate MetabolismEikenella corrodens ATCC 23834
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions.
Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate.
L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate.
The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically.
Aerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway.
Anaerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway.
Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP.
Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.
|
Creator: Julia Wakoli Created On: December 14, 2024 at 12:21 Last Updated: December 14, 2024 at 12:21 |
PW391019 |
Ascorbate MetabolismBacteroides stercoris ATCC 43183
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions.
Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate.
L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate.
The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically.
Aerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway.
Anaerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway.
Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP.
Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.
|
Creator: Julia Wakoli Created On: December 13, 2024 at 13:38 Last Updated: December 13, 2024 at 13:38 |
PW390965 |
Ascorbate MetabolismBacteroides clarus YIT 12056
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions.
Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate.
L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate.
The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically.
Aerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway.
Anaerobic:
3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway.
Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP.
Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.
|
Creator: Julia Wakoli Created On: December 13, 2024 at 12:55 Last Updated: December 13, 2024 at 12:55 |