
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW000070 |
disease
4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase DeficiencyHomo sapiens
4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency (SSADH; Gamma-hydroxybutyric acidemia) inhibits the formation of succinate from GABA. This deficiency results in urinary excretion of 4-hydroxybutyric acid. In vivo proton MR also indicates elevated GABA levels as compared with an age-matched control. Symptoms include ataxia, chorea or athetosis, motor retardation, seizures, macrocephaly and delayed or abnormal speech development.
|
Creator: WishartLab Created On: August 01, 2013 at 15:52 Last Updated: August 01, 2013 at 15:52 |
PW121696 |
disease
4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase DeficiencyMus musculus
4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency (SSADH; Gamma-hydroxybutyric acidemia) inhibits the formation of succinate from GABA. This deficiency results in urinary excretion of 4-hydroxybutyric acid. In vivo proton MR also indicates elevated GABA levels as compared with an age-matched control. Symptoms include ataxia, chorea or athetosis, motor retardation, seizures, macrocephaly and delayed or abnormal speech development.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:49 Last Updated: September 10, 2018 at 15:49 |
PW121922 |
disease
4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase DeficiencyRattus norvegicus
4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency (SSADH; Gamma-hydroxybutyric acidemia) inhibits the formation of succinate from GABA. This deficiency results in urinary excretion of 4-hydroxybutyric acid. In vivo proton MR also indicates elevated GABA levels as compared with an age-matched control. Symptoms include ataxia, chorea or athetosis, motor retardation, seizures, macrocephaly and delayed or abnormal speech development.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:51 Last Updated: September 10, 2018 at 15:51 |
PW147022 |
4-Hydroxybutyric acid Drug Metabolism PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 10, 2023 at 13:40 Last Updated: October 10, 2023 at 13:40 |
PW251361 |
4-Chlorobiphenyl degradationPseudoxanthomonas spadix
4-chlorobiphenyl, a PCB and environmental pollutant, is degraded by bacteria e.g., Pseudoxanthomonas spadix a source of carbon and energy. 4-Chlorobiphenyl degradation in Pseudoxanthomonas spadix begins with the oxidation of 4-chlorobiphenyl by biphenyl 2,3-dioxygenase small subunit (BphA2) to form an intermediate compound, cis-2,3-Dihydro-2,3-dihydroxy-4'-chlorobiphenyl. This intermediate is then dehydrogenated to 2,3-Dihydroxy-4'-chlorobiphenyl, by 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase. Subsequently, the compound is converted by 2,3-dihydroxybiphenyl-1,2-dioxygenase to form 2-Hydroxy-6-oxo-6-(4'-chlorophenyl)-hexa-2,4-dienoate, that is further degraded to produce compounds such as pyruvate and acetyl-COA which are essential for glycolysis and citrate cycle.
|
Creator: Julia Wakoli Created On: May 22, 2024 at 13:58 Last Updated: May 22, 2024 at 13:58 |
PW146983 |
4-Aminohippuric acid Drug Metabolism PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 10, 2023 at 13:35 Last Updated: October 10, 2023 at 13:35 |
PW002068 |
4-Aminobutanoate Degradation IEscherichia coli
Putrescine is an organic chemical produced when amino acids are broken down in organsisms, both living and dead. It can be used as a carbon and nitrogen source in E. coli, and is broken down into gamma-aminobutyric acid (GABA). In this pathway, GABA from putrescine degradation reacts with oxoglutaric acid in a reversible reaction catalyzed by 4-aminobutyrate aminotransferase. This reaction forms succinic acid semialdehyde, as well as L-glutamic acid as a byproduct. Succinic acid semialdehyde is then converted to succinic acid in a reaction catalyzed by succinate-semialdehyde dehydrogenase, using NAD as a cofactor. Succinic acid can then be used by the bacteria in the TCA cycle.
|
Creator: Ana Marcu Created On: October 09, 2015 at 15:50 Last Updated: October 09, 2015 at 15:50 |
PW366809 |
4-Aminobutanoate Degradation IMegamonas funiformis YIT 11815
Putrescine is an organic chemical produced when amino acids are broken down in organsisms, both living and dead. It can be used as a carbon and nitrogen source in E. coli, and is broken down into gamma-aminobutyric acid (GABA). In this pathway, GABA from putrescine degradation reacts with oxoglutaric acid in a reversible reaction catalyzed by 4-aminobutyrate aminotransferase. This reaction forms succinic acid semialdehyde, as well as L-glutamic acid as a byproduct. Succinic acid semialdehyde is then converted to succinic acid in a reaction catalyzed by succinate-semialdehyde dehydrogenase, using NAD as a cofactor. Succinic acid can then be used by the bacteria in the TCA cycle.
|
Creator: Julia Wakoli Created On: November 20, 2024 at 16:52 Last Updated: November 20, 2024 at 16:52 |
PW366777 |
4-Aminobutanoate Degradation IVibrio fluvialis PG41
Putrescine is an organic chemical produced when amino acids are broken down in organsisms, both living and dead. It can be used as a carbon and nitrogen source in E. coli, and is broken down into gamma-aminobutyric acid (GABA). In this pathway, GABA from putrescine degradation reacts with oxoglutaric acid in a reversible reaction catalyzed by 4-aminobutyrate aminotransferase. This reaction forms succinic acid semialdehyde, as well as L-glutamic acid as a byproduct. Succinic acid semialdehyde is then converted to succinic acid in a reaction catalyzed by succinate-semialdehyde dehydrogenase, using NAD as a cofactor. Succinic acid can then be used by the bacteria in the TCA cycle.
|
Creator: Julia Wakoli Created On: November 20, 2024 at 16:26 Last Updated: November 20, 2024 at 16:26 |
PW367631 |
4-Aminobutanoate Degradation IEscherichia coli O103:H2 str. 12009
Putrescine is an organic chemical produced when amino acids are broken down in organsisms, both living and dead. It can be used as a carbon and nitrogen source in E. coli, and is broken down into gamma-aminobutyric acid (GABA). In this pathway, GABA from putrescine degradation reacts with oxoglutaric acid in a reversible reaction catalyzed by 4-aminobutyrate aminotransferase. This reaction forms succinic acid semialdehyde, as well as L-glutamic acid as a byproduct. Succinic acid semialdehyde is then converted to succinic acid in a reaction catalyzed by succinate-semialdehyde dehydrogenase, using NAD as a cofactor. Succinic acid can then be used by the bacteria in the TCA cycle.
|
Creator: Julia Wakoli Created On: November 21, 2024 at 10:12 Last Updated: November 21, 2024 at 10:12 |