
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW684938 |
Tryptophan MetabolismSutterella wadsworthensis 3_1_45B
The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
|
Creator: Julia Wakoli Created On: December 23, 2024 at 16:41 Last Updated: December 23, 2024 at 16:41 |
PW410918 |
Tryptophan MetabolismStenotrophomonas maltophilia D457
The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
|
Creator: Julia Wakoli Created On: December 23, 2024 at 23:49 Last Updated: December 23, 2024 at 23:49 |
PW685062 |
Tryptophan MetabolismSilanimonas lenta DSM 16282
The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
|
Creator: Julia Wakoli Created On: December 23, 2024 at 23:49 Last Updated: December 23, 2024 at 23:49 |
PW415110 |
Tryptophan MetabolismEscherichia coli str. K-12 substr. DH10B
The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
|
Creator: Julia Wakoli Created On: December 25, 2024 at 21:14 Last Updated: December 25, 2024 at 21:14 |
PW684860 |
Tryptophan MetabolismEscherichia coli (strain K12)
The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
|
Creator: Julia Wakoli Created On: December 22, 2024 at 15:15 Last Updated: December 22, 2024 at 15:15 |
PW406929 |
Tryptophan MetabolismArcobacter butzleri RM4018
The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
|
Creator: Julia Wakoli Created On: December 22, 2024 at 17:49 Last Updated: December 22, 2024 at 17:49 |
PW409904 |
Tryptophan MetabolismAchromobacter xylosoxidans NBRC 15126 = ATCC 27061
The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
|
Creator: Julia Wakoli Created On: December 23, 2024 at 16:00 Last Updated: December 23, 2024 at 16:00 |
PW684987 |
Tryptophan MetabolismEnterobacter cancerogenus ATCC 35316
The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
|
Creator: Julia Wakoli Created On: December 23, 2024 at 19:51 Last Updated: December 23, 2024 at 19:51 |
PW410432 |
Tryptophan MetabolismEscherichia sp. 4_1_40B
The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
|
Creator: Julia Wakoli Created On: December 23, 2024 at 20:11 Last Updated: December 23, 2024 at 20:11 |
PW685070 |
Tryptophan MetabolismPyramidobacter piscolens W5455
The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
|
Creator: Julia Wakoli Created On: December 24, 2024 at 00:09 Last Updated: December 24, 2024 at 00:09 |