Loader

Pathways

PathWhiz ID Pathway Meta Data

PW492783

Pw492783 View Pathway
metabolic

Uracil Degradation III

Vibrio fluvialis PG41
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW491293

Pw491293 View Pathway
metabolic

Uracil Degradation III

Prevotella loescheii DSM 19665 = JCM 12249 = ATCC 15930
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW685954

Pw685954 View Pathway
metabolic

Uracil Degradation III

Helicobacter canadensis MIT 98-5491
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW685854

Pw685854 View Pathway
metabolic

Uracil Degradation III

Acidaminococcus fermentans DSM 20731
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW492103

Pw492103 View Pathway
metabolic

Uracil Degradation III

Campylobacter hyointestinalis subsp. hyointestinalis LMG 9260
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW491983

Pw491983 View Pathway
metabolic

Uracil Degradation III

Neisseria elongata subsp. glycolytica ATCC 29315
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW686011

Pw686011 View Pathway
metabolic

Uracil Degradation III

Haemophilus haemolyticus M19501
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW489104

Pw489104 View Pathway
metabolic

Uracil Degradation III

Parabacteroides goldsteinii dnLKV18
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW491623

Pw491623 View Pathway
metabolic

Uracil Degradation III

Fusobacterium gonidiaformans 3-1-5R
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW492183

Pw492183 View Pathway
metabolic

Uracil Degradation III

Helicobacter bilis ATCC 43879
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.