Loader

Pathways

PathWhiz ID Pathway Meta Data

PW495608

Pw495608 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Escherichia coli (strain ATCC 8739 / DSM 1576 / Crooks)
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW496461

Pw496461 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Achromobacter xylosoxidans A8
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW496409

Pw496409 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Methylococcus capsulatus
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW499371

Pw499371 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Bacteroides sp. D1
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW499547

Pw499547 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Alloprevotella tannerae ATCC 51259
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW686131

Pw686131 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Porphyromonas somerae DSM 23386
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW495646

Pw495646 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Escherichia coli (strain 55989 / EAEC)
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW500729

Pw500729 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Kingella oralis ATCC 51147
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW497801

Pw497801 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Pseudomonas stutzeri DSM 4166
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW498873

Pw498873 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Bacteroides fluxus YIT 12057
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide