
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW483600 |
2-Oxopent-4-enoate MetabolismParabacteroides sp. 2_1_7
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate.
The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate.
The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle
|
Creator: Julia Wakoli Created On: January 29, 2025 at 02:39 Last Updated: January 29, 2025 at 02:39 |
PW486515 |
2-Oxopent-4-enoate MetabolismStenotrophomonas maltophilia D457
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate.
The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate.
The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle
|
Creator: Julia Wakoli Created On: January 29, 2025 at 22:02 Last Updated: January 29, 2025 at 22:02 |
PW493248 |
2-Oxopent-4-enoate MetabolismEscherichia coli K-12
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate.
The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate.
The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle
|
Creator: Julia Wakoli Created On: February 01, 2025 at 13:27 Last Updated: February 01, 2025 at 13:27 |
PW493589 |
2-Oxopent-4-enoate MetabolismEscherichia coli SE15
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate.
The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate.
The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle
|
Creator: Julia Wakoli Created On: February 01, 2025 at 16:54 Last Updated: February 01, 2025 at 16:54 |
PW493988 |
2-Oxopent-4-enoate MetabolismBacteroides intestinalis
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate.
The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate.
The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle
|
Creator: Julia Wakoli Created On: February 02, 2025 at 20:47 Last Updated: February 02, 2025 at 20:47 |
PW494638 |
2-Oxopent-4-enoate MetabolismEscherichia coli O26:H11 str. 11368
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate.
The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate.
The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle
|
Creator: Julia Wakoli Created On: February 03, 2025 at 03:02 Last Updated: February 03, 2025 at 03:02 |
PW493849 |
2-Oxopent-4-enoate MetabolismBacteroides massiliensis
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate.
The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate.
The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle
|
Creator: Julia Wakoli Created On: February 01, 2025 at 19:23 Last Updated: February 01, 2025 at 19:23 |
PW494518 |
2-Oxopent-4-enoate MetabolismEscherichia coli HS
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate.
The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate.
The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle
|
Creator: Julia Wakoli Created On: February 03, 2025 at 01:27 Last Updated: February 03, 2025 at 01:27 |
PW493139 |
2-Oxopent-4-enoate MetabolismEscherichia coli (strain ATCC 55124 / KO11)
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate.
The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate.
The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle
|
Creator: Julia Wakoli Created On: February 01, 2025 at 12:09 Last Updated: February 01, 2025 at 12:09 |
PW481999 |
2-Oxopent-4-enoate MetabolismBacteroides finegoldii DSM 17565
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate.
The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate.
The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle
|
Creator: Julia Wakoli Created On: January 28, 2025 at 14:22 Last Updated: January 28, 2025 at 14:22 |