Loader

Pathways

PathWhiz ID Pathway Meta Data

PW494908

Pw494908 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Escherichia coli 042
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW482530

Pw482530 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Bacteroides sp. 3_2_5
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW485762

Pw485762 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Hafnia alvei ATCC 51873
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW493234

Pw493234 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Escherichia coli O157:H7
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW001890

Pw001890 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Escherichia coli
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW685720

Pw685720 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Salmonella enterica subsp. enterica serovar Dublin str. CT02021853
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW481663

Pw481663 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Shigella flexneri 5 str. 8401
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW479625

Pw479625 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Bacteroides clarus YIT 12056
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW479416

Pw479416 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Aeromonas media WS
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle

PW479942

Pw479942 View Pathway
metabolic

2-Oxopent-4-enoate Metabolism

Parabacteroides goldsteinii dnLKV18
The pathway starts with trans-cinnamate interacting with a hydrogen ion, an oxygen molecule, and a NADH through a cinnamate dioxygenase resulting in a NAD and a cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol which then interact together through a 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase resulting in the release of a hydrogen ion, an NADH molecule and a 2,3 dihydroxy-trans-cinnamate. The second way by which the 2,3 dihydroxy-trans-cinnamate is acquired is through a 3-hydroxy-trans-cinnamate interacting with a hydrogen ion, a NADH and an oxygen molecule through a 3-(3-hydroxyphenyl)propionate 2-hydroxylase resulting in the release of a NAD molecule, a water molecule and a 2,3-dihydroxy-trans-cinnamate. The compound 2,3 dihydroxy-trans-cinnamate then interacts with an oxygen molecule through a 2,3-dihydroxyphenylpropionate 1,2-dioxygenase resulting in a hydrogen ion and a 2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate. The latter compound then interacts with a water molecule through a 2-hydroxy-6-oxononatrienedioate hydrolase resulting in a release of a hydrogen ion, a fumarate molecule and (2Z)-2-hydroxypenta-2,4-dienoate. The latter compound reacts spontaneously to isomerize into a 2-oxopent-4-enoate. This compound is then hydrated through a 2-oxopent-4-enoate hydratase resulting in a 4-hydroxy-2-oxopentanoate. This compound then interacts with a 4-hydroxy-2-ketovalerate aldolase resulting in the release of a pyruvate, and an acetaldehyde. The acetaldehyde then interacts with a coenzyme A and a NAD molecule through a acetaldehyde dehydrogenase resulting in a hydrogen ion, a NADH and an acetyl-coa which can be incorporated into the TCA cycle