
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW501007 |
1,6-Anhydro-N-acetylmuramic Acid RecyclingHelicobacter cinaedi CCUG 18818 = ATCC BAA-847
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.
|
Creator: Julia Wakoli Created On: February 05, 2025 at 09:39 Last Updated: February 05, 2025 at 09:39 |
PW501362 |
1,6-Anhydro-N-acetylmuramic Acid RecyclingEdwardsiella tarda ATCC 23685
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.
|
Creator: Julia Wakoli Created On: February 05, 2025 at 13:20 Last Updated: February 05, 2025 at 13:20 |
PW500763 |
1,6-Anhydro-N-acetylmuramic Acid RecyclingNeisseria cinerea ATCC 14685
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.
|
Creator: Julia Wakoli Created On: February 05, 2025 at 07:05 Last Updated: February 05, 2025 at 07:05 |
PW500706 |
1,6-Anhydro-N-acetylmuramic Acid RecyclingParasutterella excrementihominis YIT 11859
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.
|
Creator: Julia Wakoli Created On: February 05, 2025 at 06:23 Last Updated: February 05, 2025 at 06:23 |
PW501247 |
1,6-Anhydro-N-acetylmuramic Acid RecyclingKlebsiella pneumoniae MGH 78578
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.
|
Creator: Julia Wakoli Created On: February 05, 2025 at 11:58 Last Updated: February 05, 2025 at 11:58 |
PW499125 |
1,6-Anhydro-N-acetylmuramic Acid RecyclingBacteroides xylanisolvens SD CC 1b
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.
|
Creator: Julia Wakoli Created On: February 04, 2025 at 17:32 Last Updated: February 04, 2025 at 17:32 |
PW495995 |
1,6-Anhydro-N-acetylmuramic Acid RecyclingAlistipes shahii WAL 8301
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.
|
Creator: Julia Wakoli Created On: February 03, 2025 at 17:10 Last Updated: February 03, 2025 at 17:10 |
PW495635 |
1,6-Anhydro-N-acetylmuramic Acid RecyclingEscherichia coli (strain SMS-3-5 / SECEC)
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.
|
Creator: Julia Wakoli Created On: February 03, 2025 at 12:56 Last Updated: February 03, 2025 at 12:56 |
PW496094 |
1,6-Anhydro-N-acetylmuramic Acid RecyclingBacteroides xylanisolvens XB1A
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.
|
Creator: Julia Wakoli Created On: February 03, 2025 at 18:18 Last Updated: February 03, 2025 at 18:18 |
PW686108 |
1,6-Anhydro-N-acetylmuramic Acid RecyclingBacteroides graminisolvens DSM 19988 = JCM 15093
Most bacteria, including Escherichia coli, are composed of murein which protects and stabilizes the cell wall. Over half of the murein is broken down by Escherichia coli and recycled for the next generation. The main muropeptide is GlcNAc-anhydro-N-acetylmuramic acid (anhMurNAc)-l-Ala-γ-d-Glu-meso-Dap-d-Ala which enters the cytoplasm by AmpG protein. The peptide is then released from the muropeptide. 1,6-Anhydro-N-acetylmuramic acid (anhMurNAc) is recycled by its conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK) to produce MurNAc-P. Etherase cleaves MurNAc-P to produce N-acetyl-D-glucosamine 6-phosphate. The product can undergo further degradation or be recycled into peptidoglycan monomers. The pathway's final product is a peptidoglycan biosynthesis precursor, UDP-N-acetyl-α-D-muramate. The enzyme muropeptide ligase (mpl), attaches the recovered Ala-Glu-DAP tripeptide to the precursor UDP-N-acetyl-α-D-muramate to return to the peptide to the peptidoglycan biosynthetic pathway to synthesize the cell wall.
|
Creator: Julia Wakoli Created On: February 04, 2025 at 16:25 Last Updated: February 04, 2025 at 16:25 |