Loader

Pathways

PathWhiz ID Pathway Meta Data

PW409201

Pw409201 View Pathway
metabolic

Threonine Biosynthesis

Paraprevotella xylaniphila YIT 11841
The biosynthesis of threonine starts with oxalacetic acid interacting with an L-glutamic acid through an aspartate aminotransferase resulting in a oxoglutaric acid and an L-aspartic acid. The latter compound is then phosphorylated by an ATP driven Aspartate kinase resulting in an a release of an ADP and an L-aspartyl-4-phosphate. L-aspartyl-4-phosphate then interacts with a hydrogen ion through an NADPH driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP and a L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through a NADPH driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and a L-homoserine. L-homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion and a O-phosphohomoserine. O-phosphohomoserine then interacts with a water molecule and threonine synthase resulting in the release of a phosphate and an L-threonine.

PW410126

Pw410126 View Pathway
metabolic

Threonine Biosynthesis

Desulfovibrio sp. 3_1_syn3
The biosynthesis of threonine starts with oxalacetic acid interacting with an L-glutamic acid through an aspartate aminotransferase resulting in a oxoglutaric acid and an L-aspartic acid. The latter compound is then phosphorylated by an ATP driven Aspartate kinase resulting in an a release of an ADP and an L-aspartyl-4-phosphate. L-aspartyl-4-phosphate then interacts with a hydrogen ion through an NADPH driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP and a L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through a NADPH driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and a L-homoserine. L-homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion and a O-phosphohomoserine. O-phosphohomoserine then interacts with a water molecule and threonine synthase resulting in the release of a phosphate and an L-threonine.

PW410582

Pw410582 View Pathway
metabolic

Threonine Biosynthesis

Morganella morganii subsp. morganii KT
The biosynthesis of threonine starts with oxalacetic acid interacting with an L-glutamic acid through an aspartate aminotransferase resulting in a oxoglutaric acid and an L-aspartic acid. The latter compound is then phosphorylated by an ATP driven Aspartate kinase resulting in an a release of an ADP and an L-aspartyl-4-phosphate. L-aspartyl-4-phosphate then interacts with a hydrogen ion through an NADPH driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP and a L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through a NADPH driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and a L-homoserine. L-homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion and a O-phosphohomoserine. O-phosphohomoserine then interacts with a water molecule and threonine synthase resulting in the release of a phosphate and an L-threonine.

PW410621

Pw410621 View Pathway
metabolic

Threonine Biosynthesis

Providencia rettgeri DSM 1131
The biosynthesis of threonine starts with oxalacetic acid interacting with an L-glutamic acid through an aspartate aminotransferase resulting in a oxoglutaric acid and an L-aspartic acid. The latter compound is then phosphorylated by an ATP driven Aspartate kinase resulting in an a release of an ADP and an L-aspartyl-4-phosphate. L-aspartyl-4-phosphate then interacts with a hydrogen ion through an NADPH driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP and a L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through a NADPH driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and a L-homoserine. L-homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion and a O-phosphohomoserine. O-phosphohomoserine then interacts with a water molecule and threonine synthase resulting in the release of a phosphate and an L-threonine.

PW413992

Pw413992 View Pathway
metabolic

Threonine Biosynthesis

Escherichia coli SE15
The biosynthesis of threonine starts with oxalacetic acid interacting with an L-glutamic acid through an aspartate aminotransferase resulting in a oxoglutaric acid and an L-aspartic acid. The latter compound is then phosphorylated by an ATP driven Aspartate kinase resulting in an a release of an ADP and an L-aspartyl-4-phosphate. L-aspartyl-4-phosphate then interacts with a hydrogen ion through an NADPH driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP and a L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through a NADPH driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and a L-homoserine. L-homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion and a O-phosphohomoserine. O-phosphohomoserine then interacts with a water molecule and threonine synthase resulting in the release of a phosphate and an L-threonine.

PW002401

Pw002401 View Pathway
metabolic

Threonine Metabolism

Saccharomyces cerevisiae
The biosynthesis of threonine starts with L-aspartic acid being phosphorylated by an ATP-driven aspartate kinase resulting in a release of an ADP and an L-aspartyl-4-phosphate. This compound interacts with a hydrogen ion through an NADPH-driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP, and an L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through an NADPH-driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and an L-homoserine. L-Homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion, and an O-phosphohomoserine. The latter compound then interacts with a water molecule threonine synthase resulting in the release of a phosphate and an L-threonine. L-threonine is degraded into glycine and acetaldehyde by reacting with a threonine aldolase. Acetaldehyde can then be integrated into the mitochondria or stay in the cytosol. It is then degraded into acetyl-CoA through an aldehyde dehydrogenase.

PW002554

Pw002554 View Pathway
metabolic

Threonine Metabolism

Arabidopsis thaliana
The biosynthesis of threonine starts with L-aspartic acid being phosphorylated by an ATP-driven aspartate kinase resulting in a release of an ADP and an L-aspartyl-4-phosphate. This compound interacts with a hydrogen ion through an NADPH-driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP, and an L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through an NADPH-driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and an L-homoserine. L-Homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion, and an O-phosphohomoserine. The latter compound then interacts with a water molecule threonine synthase resulting in the release of a phosphate and an L-threonine. L-threonine is degraded into glycine and acetaldehyde by reacting with a threonine aldolase. Acetaldehyde can then be integrated into the mitochondria or stay in the cytosol. It is then degraded into acetyl-CoA through an aldehyde dehydrogenase.

PW128498

Pw128498 View Pathway
drug action

Thrombin Alfa Action Pathway

Homo sapiens
Thrombin alfa also known under the brand name Recothrom, is a platelet-activating factor to treat minor bleeding. It is administered topically, it is a recombinant thrombin identical to that of the endogenous human thrombin. Thrombin alfa is a human serine protease that cleaves fibrinogen to fibrin which leads to clot formation. Once thrombin alfa has performed its function it is rapidly inactivated by circulating endogenous plasma inhibitors.

PW128496

Pw128496 View Pathway
drug action

Thrombin Alfa Action Pathway (didnt work)

Homo sapiens
Thrombin alfa also known under the brand name Recothrom, is a platelet-activating factor to treat minor bleeding. It is administered topically, it is a recombinant thrombin identical to that of the endogenous human thrombin. Thrombin alfa is a human serine protease that cleaves fibrinogen to fibrin which leads to clot formation. Once thrombin alfa has performed its function it is rapidly inactivated by circulating endogenous plasma inhibitors.

PW129677

Pw129677 View Pathway
metabolic

Thrombopoietin Drug Metabolism

Homo sapiens