Loader

Pathways

PathWhiz ID Pathway Meta Data

PW390773

Pw390773 View Pathway
metabolic

Ascorbate Metabolism

Escherichia coli (strain K12)
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW394585

Pw394585 View Pathway
metabolic

Ascorbate Metabolism

Brachyspira pilosicoli B2904
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW394701

Pw394701 View Pathway
metabolic

Ascorbate Metabolism

Veillonella atypica ACS-049-V-Sch6
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW394243

Pw394243 View Pathway
metabolic

Ascorbate Metabolism

Campylobacter gracilis RM3268
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW394185

Pw394185 View Pathway
metabolic

Ascorbate Metabolism

Neisseria macacae ATCC 33926
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW394142

Pw394142 View Pathway
metabolic

Ascorbate Metabolism

Parasutterella excrementihominis YIT 11859
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW393954

Pw393954 View Pathway
metabolic

Ascorbate Metabolism

Dyadobacter beijingensis DSM 21582
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW394046

Pw394046 View Pathway
metabolic

Ascorbate Metabolism

Fusobacterium periodonticum 1_1_41FAA
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW393923

Pw393923 View Pathway
metabolic

Ascorbate Metabolism

Alistipes indistinctus YIT 12060
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW394426

Pw394426 View Pathway
metabolic

Ascorbate Metabolism

Morganella morganii subsp. morganii KT
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.