Loader

Pathways

PathWhiz ID Pathway Meta Data

PW393081

Pw393081 View Pathway
metabolic

Ascorbate Metabolism

Bacteroides pyogenes DSM 20611 = JCM 6294
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW393017

Pw393017 View Pathway
metabolic

Ascorbate Metabolism

Bacteroides oleiciplenus YIT 12058
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW395392

Pw395392 View Pathway
metabolic

Ascorbate Metabolism

Escherichia coli (strain ATCC 55124 / KO11)
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW395816

Pw395816 View Pathway
metabolic

Ascorbate Metabolism

Prevotella copri
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW395828

Pw395828 View Pathway
metabolic

Ascorbate Metabolism

Bacteroides plebeius
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW396294

Pw396294 View Pathway
metabolic

Ascorbate Metabolism

Escherichia coli O157:H7 str. TW14359
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW396263

Pw396263 View Pathway
metabolic

Ascorbate Metabolism

Escherichia coli S88
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW396578

Pw396578 View Pathway
metabolic

Ascorbate Metabolism

Escherichia coli IHE3034
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW396624

Pw396624 View Pathway
metabolic

Ascorbate Metabolism

Escherichia coli DH1
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW396321

Pw396321 View Pathway
metabolic

Ascorbate Metabolism

Escherichia coli O26:H11 str. 11368
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.