
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW491470 |
Aminopropylcadaverine BiosynthesisAlistipes indistinctus YIT 12060
Aminopropylcadaverine, a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are involved in protein synthesis, DNA and RNA related processes, as well as the facilitation of cell stress resistance and membrane integrity; therefore polyamines are essential for cell growth. In this pathway, L-lysine is produced by lysine biosynthesis, then lysine decarboxylase will convert L-lysine into cadaverine. In the final step, spermidine synthase will catalyze cadaverine and decarboxy-SAM to aminopropylcadaverine as well as 5'-Methylthioadenosine.
|
Creator: Julia Wakoli Created On: January 31, 2025 at 20:12 Last Updated: January 31, 2025 at 20:12 |
PW493116 |
Aminopropylcadaverine BiosynthesisHalococcus morrhuae DSM 1307
Aminopropylcadaverine, a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are involved in protein synthesis, DNA and RNA related processes, as well as the facilitation of cell stress resistance and membrane integrity; therefore polyamines are essential for cell growth. In this pathway, L-lysine is produced by lysine biosynthesis, then lysine decarboxylase will convert L-lysine into cadaverine. In the final step, spermidine synthase will catalyze cadaverine and decarboxy-SAM to aminopropylcadaverine as well as 5'-Methylthioadenosine.
|
Creator: Julia Wakoli Created On: February 01, 2025 at 11:58 Last Updated: February 01, 2025 at 11:58 |
PW490737 |
Aminopropylcadaverine BiosynthesisBacteroides fluxus YIT 12057
Aminopropylcadaverine, a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are involved in protein synthesis, DNA and RNA related processes, as well as the facilitation of cell stress resistance and membrane integrity; therefore polyamines are essential for cell growth. In this pathway, L-lysine is produced by lysine biosynthesis, then lysine decarboxylase will convert L-lysine into cadaverine. In the final step, spermidine synthase will catalyze cadaverine and decarboxy-SAM to aminopropylcadaverine as well as 5'-Methylthioadenosine.
|
Creator: Julia Wakoli Created On: January 31, 2025 at 14:13 Last Updated: January 31, 2025 at 14:13 |
PW490845 |
Aminopropylcadaverine BiosynthesisBacteroides xylanisolvens SD CC 1b
Aminopropylcadaverine, a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are involved in protein synthesis, DNA and RNA related processes, as well as the facilitation of cell stress resistance and membrane integrity; therefore polyamines are essential for cell growth. In this pathway, L-lysine is produced by lysine biosynthesis, then lysine decarboxylase will convert L-lysine into cadaverine. In the final step, spermidine synthase will catalyze cadaverine and decarboxy-SAM to aminopropylcadaverine as well as 5'-Methylthioadenosine.
|
Creator: Julia Wakoli Created On: January 31, 2025 at 15:03 Last Updated: January 31, 2025 at 15:03 |
PW490991 |
Aminopropylcadaverine BiosynthesisBacteroides sp. 4_1_36
Aminopropylcadaverine, a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are involved in protein synthesis, DNA and RNA related processes, as well as the facilitation of cell stress resistance and membrane integrity; therefore polyamines are essential for cell growth. In this pathway, L-lysine is produced by lysine biosynthesis, then lysine decarboxylase will convert L-lysine into cadaverine. In the final step, spermidine synthase will catalyze cadaverine and decarboxy-SAM to aminopropylcadaverine as well as 5'-Methylthioadenosine.
|
Creator: Julia Wakoli Created On: January 31, 2025 at 16:17 Last Updated: January 31, 2025 at 16:17 |
PW488972 |
Aminopropylcadaverine BiosynthesisBacteroides xylanisolvens XB1A
Aminopropylcadaverine, a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are involved in protein synthesis, DNA and RNA related processes, as well as the facilitation of cell stress resistance and membrane integrity; therefore polyamines are essential for cell growth. In this pathway, L-lysine is produced by lysine biosynthesis, then lysine decarboxylase will convert L-lysine into cadaverine. In the final step, spermidine synthase will catalyze cadaverine and decarboxy-SAM to aminopropylcadaverine as well as 5'-Methylthioadenosine.
|
Creator: Julia Wakoli Created On: January 30, 2025 at 21:57 Last Updated: January 30, 2025 at 21:57 |
PW492168 |
Aminopropylcadaverine BiosynthesisCampylobacter rectus RM3267
Aminopropylcadaverine, a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are involved in protein synthesis, DNA and RNA related processes, as well as the facilitation of cell stress resistance and membrane integrity; therefore polyamines are essential for cell growth. In this pathway, L-lysine is produced by lysine biosynthesis, then lysine decarboxylase will convert L-lysine into cadaverine. In the final step, spermidine synthase will catalyze cadaverine and decarboxy-SAM to aminopropylcadaverine as well as 5'-Methylthioadenosine.
|
Creator: Julia Wakoli Created On: February 01, 2025 at 02:51 Last Updated: February 01, 2025 at 02:51 |
PW492170 |
Aminopropylcadaverine BiosynthesisCampylobacter showae CSUNSWCD
Aminopropylcadaverine, a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are involved in protein synthesis, DNA and RNA related processes, as well as the facilitation of cell stress resistance and membrane integrity; therefore polyamines are essential for cell growth. In this pathway, L-lysine is produced by lysine biosynthesis, then lysine decarboxylase will convert L-lysine into cadaverine. In the final step, spermidine synthase will catalyze cadaverine and decarboxy-SAM to aminopropylcadaverine as well as 5'-Methylthioadenosine.
|
Creator: Julia Wakoli Created On: February 01, 2025 at 02:51 Last Updated: February 01, 2025 at 02:51 |
PW492815 |
Aminopropylcadaverine BiosynthesisVibrio fluvialis PG41
Aminopropylcadaverine, a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are involved in protein synthesis, DNA and RNA related processes, as well as the facilitation of cell stress resistance and membrane integrity; therefore polyamines are essential for cell growth. In this pathway, L-lysine is produced by lysine biosynthesis, then lysine decarboxylase will convert L-lysine into cadaverine. In the final step, spermidine synthase will catalyze cadaverine and decarboxy-SAM to aminopropylcadaverine as well as 5'-Methylthioadenosine.
|
Creator: Julia Wakoli Created On: February 01, 2025 at 09:05 Last Updated: February 01, 2025 at 09:05 |
PW491088 |
Aminopropylcadaverine BiosynthesisBarnesiella intestinihominis YIT 11860
Aminopropylcadaverine, a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are involved in protein synthesis, DNA and RNA related processes, as well as the facilitation of cell stress resistance and membrane integrity; therefore polyamines are essential for cell growth. In this pathway, L-lysine is produced by lysine biosynthesis, then lysine decarboxylase will convert L-lysine into cadaverine. In the final step, spermidine synthase will catalyze cadaverine and decarboxy-SAM to aminopropylcadaverine as well as 5'-Methylthioadenosine.
|
Creator: Julia Wakoli Created On: January 31, 2025 at 17:08 Last Updated: January 31, 2025 at 17:08 |