Loader

Pathways

PathWhiz ID Pathway Meta Data

PW394485

Pw394485 View Pathway
metabolic

Ascorbate Metabolism

Haemophilus haemolyticus M19501
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW390774

Pw390774 View Pathway
metabolic

Ascorbate Metabolism

Escherichia coli (strain SMS-3-5 / SECEC)
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW393831

Pw393831 View Pathway
metabolic

Ascorbate Metabolism

Prevotella pallens ATCC 700821
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW394505

Pw394505 View Pathway
metabolic

Ascorbate Metabolism

Acinetobacter junii SH205
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW396203

Pw396203 View Pathway
metabolic

Ascorbate Metabolism

Escherichia coli str. K-12 substr. DH10B
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW396176

Pw396176 View Pathway
metabolic

Ascorbate Metabolism

Escherichia coli E24377A
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW396188

Pw396188 View Pathway
metabolic

Ascorbate Metabolism

Escherichia coli HS
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW394124

Pw394124 View Pathway
metabolic

Ascorbate Metabolism

Burkholderia cepacia GG4
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW394085

Pw394085 View Pathway
metabolic

Ascorbate Metabolism

Bradyrhizobium japonicum USDA 6
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.

PW394446

Pw394446 View Pathway
metabolic

Ascorbate Metabolism

Providencia rustigianii DSM 4541
E. coli is able to utilize L-ascorbate (vitamin C) as the sole source of carbon under anaerobic and aerobic conditions. Ascorbic acid in the cytoplasm is processed through a spontaneous reaction with a hydrogen ion and hydrogen peroxide, producing water, dehydroascorbic acid and ascorbic acid. Dehydroascorbic acid reacts with water spontaneously producing an isomer, dehydroascorbate (bicyclic form). The compound then loses a hydrogen ion resulting in a 2,3-Diketo-L-gulonate which is then reduced through a NADH dependent 2,3 diketo-L-gulonate reductase, releasing a NAD and 3-Dehydro-L-gulonate. 3-Dehydro-L-gulonate is phosphorylated through an ATP mediated L-xylulose/3-keto-L-gulonate kinase resulting in an ADP, hydrogen ion and a 3-Keto-L-gulonate 6 phosphate. L-ascorbate can also be imported and converted to L-ascorbate-6-phosphate by the L-ascorbate PTS transporter. L-ascorbate-6-phosphate reacts with a probable L-ascorbate-6-phosphate lactonase ulaG, resulting in a 3-keto-L-gulonate 6-phosphate. The compound 3-keto-L-gulonate 6-phosphate can then be processed aerobically or anaerobically. Aerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by a 3-keto-L-gulonate-6-phosphate decarboxylase ulaD, releasing carbon dioxide and L-xylulose-5-phosphate, which is then changed into an isomer by L-ribulose-5-phosphate 3-epimerase ulaE, resulting in L-ribulose 5-phosphate. The product also changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase ulaF resulting in Xylulose 5-phosphate, which is finally used as part of the pentose phosphate pathway. Anaerobic: 3-keto-L-gulonate 6-phosphate is decarboxylated by 3-keto-L-gulonate 6-phosphate decarboxylase sgbH, releasing carbon dioxide and L-xylulose-5-phosphate, which is changed into an isomer by predicted L-xylulose 5-phosphate 3-epimerase, resulting in L-ribulose 5-phosphate. The product again changes into a different isomer through a L-ribulose-5-phosphate 4-epimerase resulting in Xylulose 5-phosphate. Xylulose 5-phosphate then continues as part of the pentose phosphate pathway. Expression of the ula regulon is regulated by the L-ascorbate 6-phosphate-binding repressor UlaR and by cAMP-CRP. Under aerobic conditions, metabolism of L-ascorbate is hindered by the special reactivity and toxicity of this compound in the presence of oxygen.