
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW472402 |
Adenosylcobalamin Salvage from CobinamideBacteroides sp. 2_2_4
Cobinamide is incorporated from the extracellular space through a transport system into the cytosol. Once inside the cytosol, cobinamide interacts with ATP through a cobinamide adenosyl transferase resulting in the release of a triphosphate and an adenosylcobinamide. The latter compound is then phosphorylated through an ATP-dependent cobinamide kinase resulting in the release of ADP, a hydrogen ion and adenosyl-cobinamide phosphate. This last compound then interacts with GTP and a hydrogen ion through a cobinamide-P guanylyltransferase resulting in the release of a pyrophosphate and an adenosylcobinamide-GDP.
A dimethylbenzimidazole interacts with a nicotinate D-ribonucleotide through a nicotinate-nucleotide dimethylbenzumidazole phosphoribosyltransferase resulting in the release of a nicotinate, a hydrogen ion and an alpha-ribazole 5' phosphate.
The adenosylcobinamide-GDP and the alpha-ribazole 5' phosphate interact together through a cobalamin 5' phosphate synthase resulting in the release of a hydrogen ion, a GMP and Adenosylcobalamin 5'-phosphate. The latter compound then interacts with a water molecule through an adenosylcbalamin 5' phosphate phosphatase resulting in the release of a phosphate and a coenzyme B12.
Likewise a cobalamin molecule can interact with ATP through a cobalamin adenosyltransferase resulting in the release of a triphosphate and a coenzyme B12
|
Creator: Julia Wakoli Created On: January 23, 2025 at 15:08 Last Updated: January 23, 2025 at 15:08 |
PW472399 |
Adenosylcobalamin Salvage from CobinamideBacteroides sp. 1_1_14
Cobinamide is incorporated from the extracellular space through a transport system into the cytosol. Once inside the cytosol, cobinamide interacts with ATP through a cobinamide adenosyl transferase resulting in the release of a triphosphate and an adenosylcobinamide. The latter compound is then phosphorylated through an ATP-dependent cobinamide kinase resulting in the release of ADP, a hydrogen ion and adenosyl-cobinamide phosphate. This last compound then interacts with GTP and a hydrogen ion through a cobinamide-P guanylyltransferase resulting in the release of a pyrophosphate and an adenosylcobinamide-GDP.
A dimethylbenzimidazole interacts with a nicotinate D-ribonucleotide through a nicotinate-nucleotide dimethylbenzumidazole phosphoribosyltransferase resulting in the release of a nicotinate, a hydrogen ion and an alpha-ribazole 5' phosphate.
The adenosylcobinamide-GDP and the alpha-ribazole 5' phosphate interact together through a cobalamin 5' phosphate synthase resulting in the release of a hydrogen ion, a GMP and Adenosylcobalamin 5'-phosphate. The latter compound then interacts with a water molecule through an adenosylcbalamin 5' phosphate phosphatase resulting in the release of a phosphate and a coenzyme B12.
Likewise a cobalamin molecule can interact with ATP through a cobalamin adenosyltransferase resulting in the release of a triphosphate and a coenzyme B12
|
Creator: Julia Wakoli Created On: January 23, 2025 at 15:08 Last Updated: January 23, 2025 at 15:08 |
PW481624 |
Adenosylcobalamin Salvage from CobinamideEscherichia coli (strain SMS-3-5 / SECEC)
Cobinamide is incorporated from the extracellular space through a transport system into the cytosol. Once inside the cytosol, cobinamide interacts with ATP through a cobinamide adenosyl transferase resulting in the release of a triphosphate and an adenosylcobinamide. The latter compound is then phosphorylated through an ATP-dependent cobinamide kinase resulting in the release of ADP, a hydrogen ion and adenosyl-cobinamide phosphate. This last compound then interacts with GTP and a hydrogen ion through a cobinamide-P guanylyltransferase resulting in the release of a pyrophosphate and an adenosylcobinamide-GDP.
A dimethylbenzimidazole interacts with a nicotinate D-ribonucleotide through a nicotinate-nucleotide dimethylbenzumidazole phosphoribosyltransferase resulting in the release of a nicotinate, a hydrogen ion and an alpha-ribazole 5' phosphate.
The adenosylcobinamide-GDP and the alpha-ribazole 5' phosphate interact together through a cobalamin 5' phosphate synthase resulting in the release of a hydrogen ion, a GMP and Adenosylcobalamin 5'-phosphate. The latter compound then interacts with a water molecule through an adenosylcbalamin 5' phosphate phosphatase resulting in the release of a phosphate and a coenzyme B12.
Likewise a cobalamin molecule can interact with ATP through a cobalamin adenosyltransferase resulting in the release of a triphosphate and a coenzyme B12
|
Creator: Julia Wakoli Created On: January 28, 2025 at 11:24 Last Updated: January 28, 2025 at 11:24 |
PW481580 |
Adenosylcobalamin Salvage from CobinamideEscherichia coli (strain K12)
Cobinamide is incorporated from the extracellular space through a transport system into the cytosol. Once inside the cytosol, cobinamide interacts with ATP through a cobinamide adenosyl transferase resulting in the release of a triphosphate and an adenosylcobinamide. The latter compound is then phosphorylated through an ATP-dependent cobinamide kinase resulting in the release of ADP, a hydrogen ion and adenosyl-cobinamide phosphate. This last compound then interacts with GTP and a hydrogen ion through a cobinamide-P guanylyltransferase resulting in the release of a pyrophosphate and an adenosylcobinamide-GDP.
A dimethylbenzimidazole interacts with a nicotinate D-ribonucleotide through a nicotinate-nucleotide dimethylbenzumidazole phosphoribosyltransferase resulting in the release of a nicotinate, a hydrogen ion and an alpha-ribazole 5' phosphate.
The adenosylcobinamide-GDP and the alpha-ribazole 5' phosphate interact together through a cobalamin 5' phosphate synthase resulting in the release of a hydrogen ion, a GMP and Adenosylcobalamin 5'-phosphate. The latter compound then interacts with a water molecule through an adenosylcbalamin 5' phosphate phosphatase resulting in the release of a phosphate and a coenzyme B12.
Likewise a cobalamin molecule can interact with ATP through a cobalamin adenosyltransferase resulting in the release of a triphosphate and a coenzyme B12
|
Creator: Julia Wakoli Created On: January 28, 2025 at 11:02 Last Updated: January 28, 2025 at 11:02 |
PW475103 |
Adenosylcobalamin Salvage from CobinamideSerratia liquefaciens ATCC 27592
Cobinamide is incorporated from the extracellular space through a transport system into the cytosol. Once inside the cytosol, cobinamide interacts with ATP through a cobinamide adenosyl transferase resulting in the release of a triphosphate and an adenosylcobinamide. The latter compound is then phosphorylated through an ATP-dependent cobinamide kinase resulting in the release of ADP, a hydrogen ion and adenosyl-cobinamide phosphate. This last compound then interacts with GTP and a hydrogen ion through a cobinamide-P guanylyltransferase resulting in the release of a pyrophosphate and an adenosylcobinamide-GDP.
A dimethylbenzimidazole interacts with a nicotinate D-ribonucleotide through a nicotinate-nucleotide dimethylbenzumidazole phosphoribosyltransferase resulting in the release of a nicotinate, a hydrogen ion and an alpha-ribazole 5' phosphate.
The adenosylcobinamide-GDP and the alpha-ribazole 5' phosphate interact together through a cobalamin 5' phosphate synthase resulting in the release of a hydrogen ion, a GMP and Adenosylcobalamin 5'-phosphate. The latter compound then interacts with a water molecule through an adenosylcbalamin 5' phosphate phosphatase resulting in the release of a phosphate and a coenzyme B12.
Likewise a cobalamin molecule can interact with ATP through a cobalamin adenosyltransferase resulting in the release of a triphosphate and a coenzyme B12
|
Creator: Julia Wakoli Created On: January 24, 2025 at 14:27 Last Updated: January 24, 2025 at 14:27 |
PW468836 |
Adenosylcobalamin Salvage from CobinamideEscherichia coli (strain SE11)
Cobinamide is incorporated from the extracellular space through a transport system into the cytosol. Once inside the cytosol, cobinamide interacts with ATP through a cobinamide adenosyl transferase resulting in the release of a triphosphate and an adenosylcobinamide. The latter compound is then phosphorylated through an ATP-dependent cobinamide kinase resulting in the release of ADP, a hydrogen ion and adenosyl-cobinamide phosphate. This last compound then interacts with GTP and a hydrogen ion through a cobinamide-P guanylyltransferase resulting in the release of a pyrophosphate and an adenosylcobinamide-GDP.
A dimethylbenzimidazole interacts with a nicotinate D-ribonucleotide through a nicotinate-nucleotide dimethylbenzumidazole phosphoribosyltransferase resulting in the release of a nicotinate, a hydrogen ion and an alpha-ribazole 5' phosphate.
The adenosylcobinamide-GDP and the alpha-ribazole 5' phosphate interact together through a cobalamin 5' phosphate synthase resulting in the release of a hydrogen ion, a GMP and Adenosylcobalamin 5'-phosphate. The latter compound then interacts with a water molecule through an adenosylcbalamin 5' phosphate phosphatase resulting in the release of a phosphate and a coenzyme B12.
Likewise a cobalamin molecule can interact with ATP through a cobalamin adenosyltransferase resulting in the release of a triphosphate and a coenzyme B12
|
Creator: Julia Wakoli Created On: January 22, 2025 at 10:49 Last Updated: January 22, 2025 at 10:49 |
PW472705 |
Adenosylcobalamin Salvage from CobinamidePrevotella bivia DSM 20514
Cobinamide is incorporated from the extracellular space through a transport system into the cytosol. Once inside the cytosol, cobinamide interacts with ATP through a cobinamide adenosyl transferase resulting in the release of a triphosphate and an adenosylcobinamide. The latter compound is then phosphorylated through an ATP-dependent cobinamide kinase resulting in the release of ADP, a hydrogen ion and adenosyl-cobinamide phosphate. This last compound then interacts with GTP and a hydrogen ion through a cobinamide-P guanylyltransferase resulting in the release of a pyrophosphate and an adenosylcobinamide-GDP.
A dimethylbenzimidazole interacts with a nicotinate D-ribonucleotide through a nicotinate-nucleotide dimethylbenzumidazole phosphoribosyltransferase resulting in the release of a nicotinate, a hydrogen ion and an alpha-ribazole 5' phosphate.
The adenosylcobinamide-GDP and the alpha-ribazole 5' phosphate interact together through a cobalamin 5' phosphate synthase resulting in the release of a hydrogen ion, a GMP and Adenosylcobalamin 5'-phosphate. The latter compound then interacts with a water molecule through an adenosylcbalamin 5' phosphate phosphatase resulting in the release of a phosphate and a coenzyme B12.
Likewise a cobalamin molecule can interact with ATP through a cobalamin adenosyltransferase resulting in the release of a triphosphate and a coenzyme B12
|
Creator: Julia Wakoli Created On: January 23, 2025 at 18:27 Last Updated: January 23, 2025 at 18:27 |
PW484229 |
Adenosylcobalamin Salvage from CobinamideEscherichia coli O157:H7 str. TW14359
Cobinamide is incorporated from the extracellular space through a transport system into the cytosol. Once inside the cytosol, cobinamide interacts with ATP through a cobinamide adenosyl transferase resulting in the release of a triphosphate and an adenosylcobinamide. The latter compound is then phosphorylated through an ATP-dependent cobinamide kinase resulting in the release of ADP, a hydrogen ion and adenosyl-cobinamide phosphate. This last compound then interacts with GTP and a hydrogen ion through a cobinamide-P guanylyltransferase resulting in the release of a pyrophosphate and an adenosylcobinamide-GDP.
A dimethylbenzimidazole interacts with a nicotinate D-ribonucleotide through a nicotinate-nucleotide dimethylbenzumidazole phosphoribosyltransferase resulting in the release of a nicotinate, a hydrogen ion and an alpha-ribazole 5' phosphate.
The adenosylcobinamide-GDP and the alpha-ribazole 5' phosphate interact together through a cobalamin 5' phosphate synthase resulting in the release of a hydrogen ion, a GMP and Adenosylcobalamin 5'-phosphate. The latter compound then interacts with a water molecule through an adenosylcbalamin 5' phosphate phosphatase resulting in the release of a phosphate and a coenzyme B12.
Likewise a cobalamin molecule can interact with ATP through a cobalamin adenosyltransferase resulting in the release of a triphosphate and a coenzyme B12
|
Creator: Julia Wakoli Created On: January 29, 2025 at 06:58 Last Updated: January 29, 2025 at 06:58 |
PW469694 |
Adenosylcobalamin Salvage from CobinamideParabacteroides goldsteinii dnLKV18
Cobinamide is incorporated from the extracellular space through a transport system into the cytosol. Once inside the cytosol, cobinamide interacts with ATP through a cobinamide adenosyl transferase resulting in the release of a triphosphate and an adenosylcobinamide. The latter compound is then phosphorylated through an ATP-dependent cobinamide kinase resulting in the release of ADP, a hydrogen ion and adenosyl-cobinamide phosphate. This last compound then interacts with GTP and a hydrogen ion through a cobinamide-P guanylyltransferase resulting in the release of a pyrophosphate and an adenosylcobinamide-GDP.
A dimethylbenzimidazole interacts with a nicotinate D-ribonucleotide through a nicotinate-nucleotide dimethylbenzumidazole phosphoribosyltransferase resulting in the release of a nicotinate, a hydrogen ion and an alpha-ribazole 5' phosphate.
The adenosylcobinamide-GDP and the alpha-ribazole 5' phosphate interact together through a cobalamin 5' phosphate synthase resulting in the release of a hydrogen ion, a GMP and Adenosylcobalamin 5'-phosphate. The latter compound then interacts with a water molecule through an adenosylcbalamin 5' phosphate phosphatase resulting in the release of a phosphate and a coenzyme B12.
Likewise a cobalamin molecule can interact with ATP through a cobalamin adenosyltransferase resulting in the release of a triphosphate and a coenzyme B12
|
Creator: Julia Wakoli Created On: January 22, 2025 at 17:54 Last Updated: January 22, 2025 at 17:54 |
PW472882 |
Adenosylcobalamin Salvage from CobinamidePrevotella intermedia ATCC 25611 = DSM 20706
Cobinamide is incorporated from the extracellular space through a transport system into the cytosol. Once inside the cytosol, cobinamide interacts with ATP through a cobinamide adenosyl transferase resulting in the release of a triphosphate and an adenosylcobinamide. The latter compound is then phosphorylated through an ATP-dependent cobinamide kinase resulting in the release of ADP, a hydrogen ion and adenosyl-cobinamide phosphate. This last compound then interacts with GTP and a hydrogen ion through a cobinamide-P guanylyltransferase resulting in the release of a pyrophosphate and an adenosylcobinamide-GDP.
A dimethylbenzimidazole interacts with a nicotinate D-ribonucleotide through a nicotinate-nucleotide dimethylbenzumidazole phosphoribosyltransferase resulting in the release of a nicotinate, a hydrogen ion and an alpha-ribazole 5' phosphate.
The adenosylcobinamide-GDP and the alpha-ribazole 5' phosphate interact together through a cobalamin 5' phosphate synthase resulting in the release of a hydrogen ion, a GMP and Adenosylcobalamin 5'-phosphate. The latter compound then interacts with a water molecule through an adenosylcbalamin 5' phosphate phosphatase resulting in the release of a phosphate and a coenzyme B12.
Likewise a cobalamin molecule can interact with ATP through a cobalamin adenosyltransferase resulting in the release of a triphosphate and a coenzyme B12
|
Creator: Julia Wakoli Created On: January 23, 2025 at 20:12 Last Updated: January 23, 2025 at 20:12 |