
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW500674 |
Allantoin Degradation (Anaerobic)Parasutterella excrementihominis YIT 11859
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 05, 2025 at 06:01 Last Updated: February 05, 2025 at 06:01 |
PW501425 |
Allantoin Degradation (Anaerobic)Serratia marcescens subsp. marcescens Db11
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 05, 2025 at 13:59 Last Updated: February 05, 2025 at 13:59 |
PW499953 |
Allantoin Degradation (Anaerobic)Prevotella pallens ATCC 700821
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 04, 2025 at 23:02 Last Updated: February 04, 2025 at 23:02 |
PW496056 |
Allantoin Degradation (Anaerobic)Bacteroides stercoris ATCC 43183
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 03, 2025 at 17:53 Last Updated: February 03, 2025 at 17:53 |
PW500135 |
Allantoin Degradation (Anaerobic)Parabacteroides johnsonii DSM 18315
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 05, 2025 at 00:32 Last Updated: February 05, 2025 at 00:32 |
PW495647 |
Allantoin Degradation (Anaerobic)Escherichia coli (strain K12 / MC4100 / BW2952)
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 03, 2025 at 13:05 Last Updated: February 03, 2025 at 13:05 |
PW497889 |
Allantoin Degradation (Anaerobic)Escherichia coli W
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 04, 2025 at 10:00 Last Updated: February 04, 2025 at 10:00 |
PW498963 |
Allantoin Degradation (Anaerobic)Bacteroides pyogenes DSM 20611 = JCM 6294
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 04, 2025 at 16:34 Last Updated: February 04, 2025 at 16:34 |
PW495609 |
Allantoin Degradation (Anaerobic)Escherichia coli (strain SMS-3-5 / SECEC)
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 03, 2025 at 12:32 Last Updated: February 03, 2025 at 12:32 |
PW686083 |
Allantoin Degradation (Anaerobic)Campylobacter jejuni RM1221
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 04, 2025 at 09:28 Last Updated: February 04, 2025 at 09:28 |